![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > csbnestgf | GIF version |
Description: Nest the composition of two substitutions. (Contributed by NM, 23-Nov-2005.) (Proof shortened by Mario Carneiro, 10-Nov-2016.) |
Ref | Expression |
---|---|
csbnestgf | ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑦Ⅎ𝑥𝐶) → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2611 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | df-csb 2910 | . . . . . . 7 ⊢ ⦋𝐵 / 𝑦⦌𝐶 = {𝑧 ∣ [𝐵 / 𝑦]𝑧 ∈ 𝐶} | |
3 | 2 | abeq2i 2190 | . . . . . 6 ⊢ (𝑧 ∈ ⦋𝐵 / 𝑦⦌𝐶 ↔ [𝐵 / 𝑦]𝑧 ∈ 𝐶) |
4 | 3 | sbcbii 2874 | . . . . 5 ⊢ ([𝐴 / 𝑥]𝑧 ∈ ⦋𝐵 / 𝑦⦌𝐶 ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝑧 ∈ 𝐶) |
5 | nfcr 2212 | . . . . . . 7 ⊢ (Ⅎ𝑥𝐶 → Ⅎ𝑥 𝑧 ∈ 𝐶) | |
6 | 5 | alimi 1385 | . . . . . 6 ⊢ (∀𝑦Ⅎ𝑥𝐶 → ∀𝑦Ⅎ𝑥 𝑧 ∈ 𝐶) |
7 | sbcnestgf 2954 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ ∀𝑦Ⅎ𝑥 𝑧 ∈ 𝐶) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝑧 ∈ 𝐶 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝑧 ∈ 𝐶)) | |
8 | 6, 7 | sylan2 280 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ ∀𝑦Ⅎ𝑥𝐶) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝑧 ∈ 𝐶 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝑧 ∈ 𝐶)) |
9 | 4, 8 | syl5bb 190 | . . . 4 ⊢ ((𝐴 ∈ V ∧ ∀𝑦Ⅎ𝑥𝐶) → ([𝐴 / 𝑥]𝑧 ∈ ⦋𝐵 / 𝑦⦌𝐶 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝑧 ∈ 𝐶)) |
10 | 9 | abbidv 2197 | . . 3 ⊢ ((𝐴 ∈ V ∧ ∀𝑦Ⅎ𝑥𝐶) → {𝑧 ∣ [𝐴 / 𝑥]𝑧 ∈ ⦋𝐵 / 𝑦⦌𝐶} = {𝑧 ∣ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝑧 ∈ 𝐶}) |
11 | 1, 10 | sylan 277 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑦Ⅎ𝑥𝐶) → {𝑧 ∣ [𝐴 / 𝑥]𝑧 ∈ ⦋𝐵 / 𝑦⦌𝐶} = {𝑧 ∣ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝑧 ∈ 𝐶}) |
12 | df-csb 2910 | . 2 ⊢ ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = {𝑧 ∣ [𝐴 / 𝑥]𝑧 ∈ ⦋𝐵 / 𝑦⦌𝐶} | |
13 | df-csb 2910 | . 2 ⊢ ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌𝐶 = {𝑧 ∣ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝑧 ∈ 𝐶} | |
14 | 11, 12, 13 | 3eqtr4g 2139 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑦Ⅎ𝑥𝐶) → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∀wal 1283 = wceq 1285 Ⅎwnf 1390 ∈ wcel 1434 {cab 2068 Ⅎwnfc 2207 Vcvv 2602 [wsbc 2816 ⦋csb 2909 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-v 2604 df-sbc 2817 df-csb 2910 |
This theorem is referenced by: csbnestg 2957 csbnest1g 2958 |
Copyright terms: Public domain | W3C validator |