ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmpog GIF version

Theorem dmmpog 6107
Description: Domain of an operation given by the maps-to notation, closed form of dmmpo 6103. Caution: This theorem is only valid in the very special case where the value of the mapping is a constant! (Contributed by Alexander van der Vekens, 1-Jun-2017.) (Proof shortened by AV, 10-Feb-2019.)
Hypothesis
Ref Expression
dmmpog.f 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
dmmpog (𝐶𝑉 → dom 𝐹 = (𝐴 × 𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑉,𝑦   𝑥,𝐶,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem dmmpog
StepHypRef Expression
1 simpl 108 . . 3 ((𝐶𝑉 ∧ (𝑥𝐴𝑦𝐵)) → 𝐶𝑉)
21ralrimivva 2514 . 2 (𝐶𝑉 → ∀𝑥𝐴𝑦𝐵 𝐶𝑉)
3 dmmpog.f . . 3 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
43dmmpoga 6106 . 2 (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → dom 𝐹 = (𝐴 × 𝐵))
52, 4syl 14 1 (𝐶𝑉 → dom 𝐹 = (𝐴 × 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  wral 2416   × cxp 4537  dom cdm 4539  cmpo 5776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator