ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elintab GIF version

Theorem elintab 3668
Description: Membership in the intersection of a class abstraction. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
inteqab.1 𝐴 ∈ V
Assertion
Ref Expression
elintab (𝐴 {𝑥𝜑} ↔ ∀𝑥(𝜑𝐴𝑥))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem elintab
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 inteqab.1 . . 3 𝐴 ∈ V
21elint 3663 . 2 (𝐴 {𝑥𝜑} ↔ ∀𝑦(𝑦 ∈ {𝑥𝜑} → 𝐴𝑦))
3 nfsab1 2073 . . . 4 𝑥 𝑦 ∈ {𝑥𝜑}
4 nfv 1462 . . . 4 𝑥 𝐴𝑦
53, 4nfim 1505 . . 3 𝑥(𝑦 ∈ {𝑥𝜑} → 𝐴𝑦)
6 nfv 1462 . . 3 𝑦(𝜑𝐴𝑥)
7 eleq1 2145 . . . . 5 (𝑦 = 𝑥 → (𝑦 ∈ {𝑥𝜑} ↔ 𝑥 ∈ {𝑥𝜑}))
8 abid 2071 . . . . 5 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
97, 8syl6bb 194 . . . 4 (𝑦 = 𝑥 → (𝑦 ∈ {𝑥𝜑} ↔ 𝜑))
10 eleq2 2146 . . . 4 (𝑦 = 𝑥 → (𝐴𝑦𝐴𝑥))
119, 10imbi12d 232 . . 3 (𝑦 = 𝑥 → ((𝑦 ∈ {𝑥𝜑} → 𝐴𝑦) ↔ (𝜑𝐴𝑥)))
125, 6, 11cbval 1679 . 2 (∀𝑦(𝑦 ∈ {𝑥𝜑} → 𝐴𝑦) ↔ ∀𝑥(𝜑𝐴𝑥))
132, 12bitri 182 1 (𝐴 {𝑥𝜑} ↔ ∀𝑥(𝜑𝐴𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103  wal 1283  wcel 1434  {cab 2069  Vcvv 2611   cint 3657
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-v 2613  df-int 3658
This theorem is referenced by:  elintrab  3669  intmin4  3685  intab  3686  intid  4008
  Copyright terms: Public domain W3C validator