![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elintab | GIF version |
Description: Membership in the intersection of a class abstraction. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
inteqab.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elintab | ⊢ (𝐴 ∈ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inteqab.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | elint 3663 | . 2 ⊢ (𝐴 ∈ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑦(𝑦 ∈ {𝑥 ∣ 𝜑} → 𝐴 ∈ 𝑦)) |
3 | nfsab1 2073 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} | |
4 | nfv 1462 | . . . 4 ⊢ Ⅎ𝑥 𝐴 ∈ 𝑦 | |
5 | 3, 4 | nfim 1505 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ {𝑥 ∣ 𝜑} → 𝐴 ∈ 𝑦) |
6 | nfv 1462 | . . 3 ⊢ Ⅎ𝑦(𝜑 → 𝐴 ∈ 𝑥) | |
7 | eleq1 2145 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑥 ∈ {𝑥 ∣ 𝜑})) | |
8 | abid 2071 | . . . . 5 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
9 | 7, 8 | syl6bb 194 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑)) |
10 | eleq2 2146 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝑥)) | |
11 | 9, 10 | imbi12d 232 | . . 3 ⊢ (𝑦 = 𝑥 → ((𝑦 ∈ {𝑥 ∣ 𝜑} → 𝐴 ∈ 𝑦) ↔ (𝜑 → 𝐴 ∈ 𝑥))) |
12 | 5, 6, 11 | cbval 1679 | . 2 ⊢ (∀𝑦(𝑦 ∈ {𝑥 ∣ 𝜑} → 𝐴 ∈ 𝑦) ↔ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥)) |
13 | 2, 12 | bitri 182 | 1 ⊢ (𝐴 ∈ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 ∀wal 1283 ∈ wcel 1434 {cab 2069 Vcvv 2611 ∩ cint 3657 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-v 2613 df-int 3658 |
This theorem is referenced by: elintrab 3669 intmin4 3685 intab 3686 intid 4008 |
Copyright terms: Public domain | W3C validator |