Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  elun2 GIF version

Theorem elun2 3139
 Description: Membership law for union of classes. (Contributed by NM, 30-Aug-1993.)
Assertion
Ref Expression
elun2 (𝐴𝐵𝐴 ∈ (𝐶𝐵))

Proof of Theorem elun2
StepHypRef Expression
1 ssun2 3135 . 2 𝐵 ⊆ (𝐶𝐵)
21sseli 2969 1 (𝐴𝐵𝐴 ∈ (𝐶𝐵))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∈ wcel 1409   ∪ cun 2943 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038 This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-un 2950  df-in 2952  df-ss 2959 This theorem is referenced by:  dftpos4  5909  tfrlemibxssdm  5972  tfrlemi14d  5978  nndifsnid  6111  fidifsnid  6363  findcard2d  6379  findcard2sd  6380  onunsnss  6386  mnfxr  8795
 Copyright terms: Public domain W3C validator