Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcllemres GIF version

Theorem tfrcllemres 6031
 Description: Lemma for tfr1on 6019. Recursion is defined on an ordinal if the characteristic function is defined up to a suitable point. (Contributed by Jim Kingdon, 18-Mar-2022.)
Hypotheses
Ref Expression
tfrcl.f 𝐹 = recs(𝐺)
tfrcl.g (𝜑 → Fun 𝐺)
tfrcl.x (𝜑 → Ord 𝑋)
tfrcl.ex ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
tfrcllemsucfn.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfrcllemres.u ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
tfrcllemres.yx (𝜑𝑌𝑋)
Assertion
Ref Expression
tfrcllemres (𝜑𝑌 ⊆ dom 𝐹)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑓,𝐺,𝑥,𝑦   𝑆,𝑓,𝑥,𝑦   𝑓,𝑋,𝑥,𝑦   𝑓,𝑌,𝑥,𝑦   𝜑,𝑓,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑓)   𝐹(𝑥,𝑦,𝑓)

Proof of Theorem tfrcllemres
Dummy variables 𝑔 𝑧 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrcl.x . . . . . . . . . 10 (𝜑 → Ord 𝑋)
21adantr 270 . . . . . . . . 9 ((𝜑𝑧𝑌) → Ord 𝑋)
3 simpr 108 . . . . . . . . . 10 ((𝜑𝑧𝑌) → 𝑧𝑌)
4 tfrcllemres.yx . . . . . . . . . . 11 (𝜑𝑌𝑋)
54adantr 270 . . . . . . . . . 10 ((𝜑𝑧𝑌) → 𝑌𝑋)
63, 5jca 300 . . . . . . . . 9 ((𝜑𝑧𝑌) → (𝑧𝑌𝑌𝑋))
7 ordtr1 4171 . . . . . . . . 9 (Ord 𝑋 → ((𝑧𝑌𝑌𝑋) → 𝑧𝑋))
82, 6, 7sylc 61 . . . . . . . 8 ((𝜑𝑧𝑌) → 𝑧𝑋)
9 tfrcl.f . . . . . . . . 9 𝐹 = recs(𝐺)
10 tfrcl.g . . . . . . . . 9 (𝜑 → Fun 𝐺)
11 tfrcl.ex . . . . . . . . 9 ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
12 tfrcllemsucfn.1 . . . . . . . . 9 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
13 tfrcllemres.u . . . . . . . . 9 ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
149, 10, 1, 11, 12, 13tfrcllemaccex 6030 . . . . . . . 8 ((𝜑𝑧𝑋) → ∃𝑔(𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
158, 14syldan 276 . . . . . . 7 ((𝜑𝑧𝑌) → ∃𝑔(𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
1610ad2antrr 472 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → Fun 𝐺)
171ad2antrr 472 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → Ord 𝑋)
18113adant1r 1163 . . . . . . . . . 10 (((𝜑𝑧𝑌) ∧ 𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
19183adant1r 1163 . . . . . . . . 9 ((((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) ∧ 𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
204ad2antrr 472 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → 𝑌𝑋)
213adantr 270 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → 𝑧𝑌)
2213adantlr 461 . . . . . . . . . 10 (((𝜑𝑧𝑌) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
2322adantlr 461 . . . . . . . . 9 ((((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
24 simprl 498 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → 𝑔:𝑧𝑆)
25 feq2 5082 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝑔:𝑥𝑆𝑔:𝑧𝑆))
26 raleq 2554 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦)) ↔ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
2725, 26anbi12d 457 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → ((𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))) ↔ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))))
28 fveq2 5229 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑢 → (𝑔𝑦) = (𝑔𝑢))
29 reseq2 4655 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑢 → (𝑔𝑦) = (𝑔𝑢))
3029fveq2d 5233 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑢 → (𝐺‘(𝑔𝑦)) = (𝐺‘(𝑔𝑢)))
3128, 30eqeq12d 2097 . . . . . . . . . . . . . . 15 (𝑦 = 𝑢 → ((𝑔𝑦) = (𝐺‘(𝑔𝑦)) ↔ (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
3231cbvralv 2582 . . . . . . . . . . . . . 14 (∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)) ↔ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))
3332anbi2i 445 . . . . . . . . . . . . 13 ((𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦))) ↔ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
3427, 33syl6bb 194 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))) ↔ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))
3534rspcev 2710 . . . . . . . . . . 11 ((𝑧𝑋 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → ∃𝑥𝑋 (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
368, 35sylan 277 . . . . . . . . . 10 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → ∃𝑥𝑋 (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
37 vex 2613 . . . . . . . . . . 11 𝑔 ∈ V
38 feq1 5081 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (𝑓:𝑥𝑆𝑔:𝑥𝑆))
39 fveq1 5228 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (𝑓𝑦) = (𝑔𝑦))
40 reseq1 4654 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔 → (𝑓𝑦) = (𝑔𝑦))
4140fveq2d 5233 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (𝐺‘(𝑓𝑦)) = (𝐺‘(𝑔𝑦)))
4239, 41eqeq12d 2097 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → ((𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
4342ralbidv 2373 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
4438, 43anbi12d 457 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))))
4544rexbidv 2374 . . . . . . . . . . 11 (𝑓 = 𝑔 → (∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ ∃𝑥𝑋 (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))))
4637, 45, 12elab2 2749 . . . . . . . . . 10 (𝑔𝐴 ↔ ∃𝑥𝑋 (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
4736, 46sylibr 132 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → 𝑔𝐴)
489, 16, 17, 19, 12, 20, 21, 23, 24, 47tfrcllemsucaccv 6023 . . . . . . . 8 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴)
49 vex 2613 . . . . . . . . . . 11 𝑧 ∈ V
5025imbi1d 229 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ((𝑔:𝑥𝑆 → (𝐺𝑔) ∈ 𝑆) ↔ (𝑔:𝑧𝑆 → (𝐺𝑔) ∈ 𝑆)))
51113expia 1141 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝑋) → (𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
5251alrimiv 1797 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝑋) → ∀𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
53 fveq2 5229 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = 𝑔 → (𝐺𝑓) = (𝐺𝑔))
5453eleq1d 2151 . . . . . . . . . . . . . . . . . . 19 (𝑓 = 𝑔 → ((𝐺𝑓) ∈ 𝑆 ↔ (𝐺𝑔) ∈ 𝑆))
5538, 54imbi12d 232 . . . . . . . . . . . . . . . . . 18 (𝑓 = 𝑔 → ((𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ (𝑔:𝑥𝑆 → (𝐺𝑔) ∈ 𝑆)))
5655spv 1783 . . . . . . . . . . . . . . . . 17 (∀𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆) → (𝑔:𝑥𝑆 → (𝐺𝑔) ∈ 𝑆))
5752, 56syl 14 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝑋) → (𝑔:𝑥𝑆 → (𝐺𝑔) ∈ 𝑆))
5857ralrimiva 2439 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑥𝑋 (𝑔:𝑥𝑆 → (𝐺𝑔) ∈ 𝑆))
5958adantr 270 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑌) → ∀𝑥𝑋 (𝑔:𝑥𝑆 → (𝐺𝑔) ∈ 𝑆))
6050, 59, 8rspcdva 2715 . . . . . . . . . . . . 13 ((𝜑𝑧𝑌) → (𝑔:𝑧𝑆 → (𝐺𝑔) ∈ 𝑆))
6160imp 122 . . . . . . . . . . . 12 (((𝜑𝑧𝑌) ∧ 𝑔:𝑧𝑆) → (𝐺𝑔) ∈ 𝑆)
6224, 61syldan 276 . . . . . . . . . . 11 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → (𝐺𝑔) ∈ 𝑆)
63 opexg 4011 . . . . . . . . . . 11 ((𝑧 ∈ V ∧ (𝐺𝑔) ∈ 𝑆) → ⟨𝑧, (𝐺𝑔)⟩ ∈ V)
6449, 62, 63sylancr 405 . . . . . . . . . 10 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → ⟨𝑧, (𝐺𝑔)⟩ ∈ V)
65 snidg 3441 . . . . . . . . . 10 (⟨𝑧, (𝐺𝑔)⟩ ∈ V → ⟨𝑧, (𝐺𝑔)⟩ ∈ {⟨𝑧, (𝐺𝑔)⟩})
66 elun2 3150 . . . . . . . . . 10 (⟨𝑧, (𝐺𝑔)⟩ ∈ {⟨𝑧, (𝐺𝑔)⟩} → ⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
6764, 65, 663syl 17 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → ⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
68 opeldmg 4588 . . . . . . . . . 10 ((𝑧 ∈ V ∧ (𝐺𝑔) ∈ 𝑆) → (⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})))
6949, 62, 68sylancr 405 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → (⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})))
7067, 69mpd 13 . . . . . . . 8 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
71 dmeq 4583 . . . . . . . . . 10 ( = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → dom = dom (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
7271eleq2d 2152 . . . . . . . . 9 ( = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (𝑧 ∈ dom 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})))
7372rspcev 2710 . . . . . . . 8 (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})) → ∃𝐴 𝑧 ∈ dom )
7448, 70, 73syl2anc 403 . . . . . . 7 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → ∃𝐴 𝑧 ∈ dom )
7515, 74exlimddv 1821 . . . . . 6 ((𝜑𝑧𝑌) → ∃𝐴 𝑧 ∈ dom )
76 eliun 3702 . . . . . 6 (𝑧 𝐴 dom ↔ ∃𝐴 𝑧 ∈ dom )
7775, 76sylibr 132 . . . . 5 ((𝜑𝑧𝑌) → 𝑧 𝐴 dom )
7877ex 113 . . . 4 (𝜑 → (𝑧𝑌𝑧 𝐴 dom ))
7978ssrdv 3014 . . 3 (𝜑𝑌 𝐴 dom )
80 dmuni 4593 . . . 4 dom 𝐴 = 𝐴 dom
8112, 1tfrcllemssrecs 6021 . . . . 5 (𝜑 𝐴 ⊆ recs(𝐺))
82 dmss 4582 . . . . 5 ( 𝐴 ⊆ recs(𝐺) → dom 𝐴 ⊆ dom recs(𝐺))
8381, 82syl 14 . . . 4 (𝜑 → dom 𝐴 ⊆ dom recs(𝐺))
8480, 83syl5eqssr 3053 . . 3 (𝜑 𝐴 dom ⊆ dom recs(𝐺))
8579, 84sstrd 3018 . 2 (𝜑𝑌 ⊆ dom recs(𝐺))
869dmeqi 4584 . 2 dom 𝐹 = dom recs(𝐺)
8785, 86syl6sseqr 3055 1 (𝜑𝑌 ⊆ dom 𝐹)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 102   ∧ w3a 920  ∀wal 1283   = wceq 1285  ∃wex 1422   ∈ wcel 1434  {cab 2069  ∀wral 2353  ∃wrex 2354  Vcvv 2610   ∪ cun 2980   ⊆ wss 2982  {csn 3416  ⟨cop 3419  ∪ cuni 3621  ∪ ciun 3698  Ord word 4145  suc csuc 4148  dom cdm 4391   ↾ cres 4393  Fun wfun 4946  ⟶wf 4948  ‘cfv 4952  recscrecs 5973 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3913  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308 This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-nul 3268  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-tr 3896  df-id 4076  df-iord 4149  df-on 4151  df-suc 4154  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-recs 5974 This theorem is referenced by:  tfrcldm  6032
 Copyright terms: Public domain W3C validator