ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ersym GIF version

Theorem ersym 6148
Description: An equivalence relation is symmetric. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
ersym.1 (𝜑𝑅 Er 𝑋)
ersym.2 (𝜑𝐴𝑅𝐵)
Assertion
Ref Expression
ersym (𝜑𝐵𝑅𝐴)

Proof of Theorem ersym
StepHypRef Expression
1 ersym.2 . . 3 (𝜑𝐴𝑅𝐵)
2 ersym.1 . . . . . 6 (𝜑𝑅 Er 𝑋)
3 errel 6145 . . . . . 6 (𝑅 Er 𝑋 → Rel 𝑅)
42, 3syl 14 . . . . 5 (𝜑 → Rel 𝑅)
5 brrelex12 4408 . . . . 5 ((Rel 𝑅𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
64, 1, 5syl2anc 397 . . . 4 (𝜑 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
7 brcnvg 4543 . . . . 5 ((𝐵 ∈ V ∧ 𝐴 ∈ V) → (𝐵𝑅𝐴𝐴𝑅𝐵))
87ancoms 259 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐵𝑅𝐴𝐴𝑅𝐵))
96, 8syl 14 . . 3 (𝜑 → (𝐵𝑅𝐴𝐴𝑅𝐵))
101, 9mpbird 160 . 2 (𝜑𝐵𝑅𝐴)
11 df-er 6136 . . . . . 6 (𝑅 Er 𝑋 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝑋 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
1211simp3bi 932 . . . . 5 (𝑅 Er 𝑋 → (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅)
132, 12syl 14 . . . 4 (𝜑 → (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅)
1413unssad 3147 . . 3 (𝜑𝑅𝑅)
1514ssbrd 3832 . 2 (𝜑 → (𝐵𝑅𝐴𝐵𝑅𝐴))
1610, 15mpd 13 1 (𝜑𝐵𝑅𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102   = wceq 1259  wcel 1409  Vcvv 2574  cun 2942  wss 2944   class class class wbr 3791  ccnv 4371  dom cdm 4372  ccom 4376  Rel wrel 4377   Er wer 6133
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-br 3792  df-opab 3846  df-xp 4378  df-rel 4379  df-cnv 4380  df-er 6136
This theorem is referenced by:  ercl2  6149  ersymb  6150  ertr2d  6153  ertr3d  6154  ertr4d  6155  erth  6180  erinxp  6210
  Copyright terms: Public domain W3C validator