Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  fconst2g GIF version

Theorem fconst2g 5403
 Description: A constant function expressed as a cross product. (Contributed by NM, 27-Nov-2007.)
Assertion
Ref Expression
fconst2g (𝐵𝐶 → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵})))

Proof of Theorem fconst2g
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fvconst 5378 . . . . . . 7 ((𝐹:𝐴⟶{𝐵} ∧ 𝑥𝐴) → (𝐹𝑥) = 𝐵)
21adantlr 454 . . . . . 6 (((𝐹:𝐴⟶{𝐵} ∧ 𝐵𝐶) ∧ 𝑥𝐴) → (𝐹𝑥) = 𝐵)
3 fvconst2g 5402 . . . . . . 7 ((𝐵𝐶𝑥𝐴) → ((𝐴 × {𝐵})‘𝑥) = 𝐵)
43adantll 453 . . . . . 6 (((𝐹:𝐴⟶{𝐵} ∧ 𝐵𝐶) ∧ 𝑥𝐴) → ((𝐴 × {𝐵})‘𝑥) = 𝐵)
52, 4eqtr4d 2091 . . . . 5 (((𝐹:𝐴⟶{𝐵} ∧ 𝐵𝐶) ∧ 𝑥𝐴) → (𝐹𝑥) = ((𝐴 × {𝐵})‘𝑥))
65ralrimiva 2409 . . . 4 ((𝐹:𝐴⟶{𝐵} ∧ 𝐵𝐶) → ∀𝑥𝐴 (𝐹𝑥) = ((𝐴 × {𝐵})‘𝑥))
7 ffn 5073 . . . . 5 (𝐹:𝐴⟶{𝐵} → 𝐹 Fn 𝐴)
8 fnconstg 5111 . . . . 5 (𝐵𝐶 → (𝐴 × {𝐵}) Fn 𝐴)
9 eqfnfv 5292 . . . . 5 ((𝐹 Fn 𝐴 ∧ (𝐴 × {𝐵}) Fn 𝐴) → (𝐹 = (𝐴 × {𝐵}) ↔ ∀𝑥𝐴 (𝐹𝑥) = ((𝐴 × {𝐵})‘𝑥)))
107, 8, 9syl2an 277 . . . 4 ((𝐹:𝐴⟶{𝐵} ∧ 𝐵𝐶) → (𝐹 = (𝐴 × {𝐵}) ↔ ∀𝑥𝐴 (𝐹𝑥) = ((𝐴 × {𝐵})‘𝑥)))
116, 10mpbird 160 . . 3 ((𝐹:𝐴⟶{𝐵} ∧ 𝐵𝐶) → 𝐹 = (𝐴 × {𝐵}))
1211expcom 113 . 2 (𝐵𝐶 → (𝐹:𝐴⟶{𝐵} → 𝐹 = (𝐴 × {𝐵})))
13 fconstg 5110 . . 3 (𝐵𝐶 → (𝐴 × {𝐵}):𝐴⟶{𝐵})
14 feq1 5057 . . 3 (𝐹 = (𝐴 × {𝐵}) → (𝐹:𝐴⟶{𝐵} ↔ (𝐴 × {𝐵}):𝐴⟶{𝐵}))
1513, 14syl5ibrcom 150 . 2 (𝐵𝐶 → (𝐹 = (𝐴 × {𝐵}) → 𝐹:𝐴⟶{𝐵}))
1612, 15impbid 124 1 (𝐵𝐶 → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵})))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 101   ↔ wb 102   = wceq 1259   ∈ wcel 1409  ∀wral 2323  {csn 3402   × cxp 4370   Fn wfn 4924  ⟶wf 4925  ‘cfv 4929 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971 This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-sbc 2787  df-csb 2880  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-br 3792  df-opab 3846  df-mpt 3847  df-id 4057  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-fv 4937 This theorem is referenced by:  fconst2  5405
 Copyright terms: Public domain W3C validator