ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frel GIF version

Theorem frel 5100
Description: A mapping is a relation. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
frel (𝐹:𝐴𝐵 → Rel 𝐹)

Proof of Theorem frel
StepHypRef Expression
1 ffn 5097 . 2 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
2 fnrel 5048 . 2 (𝐹 Fn 𝐴 → Rel 𝐹)
31, 2syl 14 1 (𝐹:𝐴𝐵 → Rel 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  Rel wrel 4396   Fn wfn 4947  wf 4948
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104
This theorem depends on definitions:  df-bi 115  df-fun 4954  df-fn 4955  df-f 4956
This theorem is referenced by:  fssxp  5109  fsn  5387  eluzel2  8757
  Copyright terms: Public domain W3C validator