HomeHome Intuitionistic Logic Explorer
Theorem List (p. 53 of 133)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 5201-5300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremfunimass2 5201 A kind of contraposition law that infers an image subclass from a subclass of a preimage. (Contributed by NM, 25-May-2004.)
((Fun 𝐹𝐴 ⊆ (𝐹𝐵)) → (𝐹𝐴) ⊆ 𝐵)
 
Theoremimadiflem 5202 One direction of imadif 5203. This direction does not require Fun 𝐹. (Contributed by Jim Kingdon, 25-Dec-2018.)
((𝐹𝐴) ∖ (𝐹𝐵)) ⊆ (𝐹 “ (𝐴𝐵))
 
Theoremimadif 5203 The image of a difference is the difference of images. (Contributed by NM, 24-May-1998.)
(Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∖ (𝐹𝐵)))
 
Theoremimainlem 5204 One direction of imain 5205. This direction does not require Fun 𝐹. (Contributed by Jim Kingdon, 25-Dec-2018.)
(𝐹 “ (𝐴𝐵)) ⊆ ((𝐹𝐴) ∩ (𝐹𝐵))
 
Theoremimain 5205 The image of an intersection is the intersection of images. (Contributed by Paul Chapman, 11-Apr-2009.)
(Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∩ (𝐹𝐵)))
 
Theoremfunimaexglem 5206 Lemma for funimaexg 5207. It constitutes the interesting part of funimaexg 5207, in which 𝐵 ⊆ dom 𝐴. (Contributed by Jim Kingdon, 27-Dec-2018.)
((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → (𝐴𝐵) ∈ V)
 
Theoremfunimaexg 5207 Axiom of Replacement using abbreviations. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 10-Sep-2006.)
((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)
 
Theoremfunimaex 5208 The image of a set under any function is also a set. Equivalent of Axiom of Replacement. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 17-Nov-2002.)
𝐵 ∈ V       (Fun 𝐴 → (𝐴𝐵) ∈ V)
 
Theoremisarep1 5209* Part of a study of the Axiom of Replacement used by the Isabelle prover. The object PrimReplace is apparently the image of the function encoded by 𝜑(𝑥, 𝑦) i.e. the class ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴). If so, we can prove Isabelle's "Axiom of Replacement" conclusion without using the Axiom of Replacement, for which I (N. Megill) currently have no explanation. (Contributed by NM, 26-Oct-2006.) (Proof shortened by Mario Carneiro, 4-Dec-2016.)
(𝑏 ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴) ↔ ∃𝑥𝐴 [𝑏 / 𝑦]𝜑)
 
Theoremisarep2 5210* Part of a study of the Axiom of Replacement used by the Isabelle prover. In Isabelle, the sethood of PrimReplace is apparently postulated implicitly by its type signature "[ i, [ i, i ] => o ] => i", which automatically asserts that it is a set without using any axioms. To prove that it is a set in Metamath, we need the hypotheses of Isabelle's "Axiom of Replacement" as well as the Axiom of Replacement in the form funimaex 5208. (Contributed by NM, 26-Oct-2006.)
𝐴 ∈ V    &   𝑥𝐴𝑦𝑧((𝜑 ∧ [𝑧 / 𝑦]𝜑) → 𝑦 = 𝑧)       𝑤 𝑤 = ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴)
 
Theoremfneq1 5211 Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.)
(𝐹 = 𝐺 → (𝐹 Fn 𝐴𝐺 Fn 𝐴))
 
Theoremfneq2 5212 Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.)
(𝐴 = 𝐵 → (𝐹 Fn 𝐴𝐹 Fn 𝐵))
 
Theoremfneq1d 5213 Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.)
(𝜑𝐹 = 𝐺)       (𝜑 → (𝐹 Fn 𝐴𝐺 Fn 𝐴))
 
Theoremfneq2d 5214 Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐹 Fn 𝐴𝐹 Fn 𝐵))
 
Theoremfneq12d 5215 Equality deduction for function predicate with domain. (Contributed by NM, 26-Jun-2011.)
(𝜑𝐹 = 𝐺)    &   (𝜑𝐴 = 𝐵)       (𝜑 → (𝐹 Fn 𝐴𝐺 Fn 𝐵))
 
Theoremfneq12 5216 Equality theorem for function predicate with domain. (Contributed by Thierry Arnoux, 31-Jan-2017.)
((𝐹 = 𝐺𝐴 = 𝐵) → (𝐹 Fn 𝐴𝐺 Fn 𝐵))
 
Theoremfneq1i 5217 Equality inference for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.)
𝐹 = 𝐺       (𝐹 Fn 𝐴𝐺 Fn 𝐴)
 
Theoremfneq2i 5218 Equality inference for function predicate with domain. (Contributed by NM, 4-Sep-2011.)
𝐴 = 𝐵       (𝐹 Fn 𝐴𝐹 Fn 𝐵)
 
Theoremnffn 5219 Bound-variable hypothesis builder for a function with domain. (Contributed by NM, 30-Jan-2004.)
𝑥𝐹    &   𝑥𝐴       𝑥 𝐹 Fn 𝐴
 
Theoremfnfun 5220 A function with domain is a function. (Contributed by NM, 1-Aug-1994.)
(𝐹 Fn 𝐴 → Fun 𝐹)
 
Theoremfnrel 5221 A function with domain is a relation. (Contributed by NM, 1-Aug-1994.)
(𝐹 Fn 𝐴 → Rel 𝐹)
 
Theoremfndm 5222 The domain of a function. (Contributed by NM, 2-Aug-1994.)
(𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
 
Theoremfunfni 5223 Inference to convert a function and domain antecedent. (Contributed by NM, 22-Apr-2004.)
((Fun 𝐹𝐵 ∈ dom 𝐹) → 𝜑)       ((𝐹 Fn 𝐴𝐵𝐴) → 𝜑)
 
Theoremfndmu 5224 A function has a unique domain. (Contributed by NM, 11-Aug-1994.)
((𝐹 Fn 𝐴𝐹 Fn 𝐵) → 𝐴 = 𝐵)
 
Theoremfnbr 5225 The first argument of binary relation on a function belongs to the function's domain. (Contributed by NM, 7-May-2004.)
((𝐹 Fn 𝐴𝐵𝐹𝐶) → 𝐵𝐴)
 
Theoremfnop 5226 The first argument of an ordered pair in a function belongs to the function's domain. (Contributed by NM, 8-Aug-1994.)
((𝐹 Fn 𝐴 ∧ ⟨𝐵, 𝐶⟩ ∈ 𝐹) → 𝐵𝐴)
 
Theoremfneu 5227* There is exactly one value of a function. (Contributed by NM, 22-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
((𝐹 Fn 𝐴𝐵𝐴) → ∃!𝑦 𝐵𝐹𝑦)
 
Theoremfneu2 5228* There is exactly one value of a function. (Contributed by NM, 7-Nov-1995.)
((𝐹 Fn 𝐴𝐵𝐴) → ∃!𝑦𝐵, 𝑦⟩ ∈ 𝐹)
 
Theoremfnun 5229 The union of two functions with disjoint domains. (Contributed by NM, 22-Sep-2004.)
(((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵) = ∅) → (𝐹𝐺) Fn (𝐴𝐵))
 
Theoremfnunsn 5230 Extension of a function with a new ordered pair. (Contributed by NM, 28-Sep-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
(𝜑𝑋 ∈ V)    &   (𝜑𝑌 ∈ V)    &   (𝜑𝐹 Fn 𝐷)    &   𝐺 = (𝐹 ∪ {⟨𝑋, 𝑌⟩})    &   𝐸 = (𝐷 ∪ {𝑋})    &   (𝜑 → ¬ 𝑋𝐷)       (𝜑𝐺 Fn 𝐸)
 
Theoremfnco 5231 Composition of two functions. (Contributed by NM, 22-May-2006.)
((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → (𝐹𝐺) Fn 𝐵)
 
Theoremfnresdm 5232 A function does not change when restricted to its domain. (Contributed by NM, 5-Sep-2004.)
(𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
 
Theoremfnresdisj 5233 A function restricted to a class disjoint with its domain is empty. (Contributed by NM, 23-Sep-2004.)
(𝐹 Fn 𝐴 → ((𝐴𝐵) = ∅ ↔ (𝐹𝐵) = ∅))
 
Theorem2elresin 5234 Membership in two functions restricted by each other's domain. (Contributed by NM, 8-Aug-1994.)
((𝐹 Fn 𝐴𝐺 Fn 𝐵) → ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) ↔ (⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ (𝐴𝐵)) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐺 ↾ (𝐴𝐵)))))
 
Theoremfnssresb 5235 Restriction of a function with a subclass of its domain. (Contributed by NM, 10-Oct-2007.)
(𝐹 Fn 𝐴 → ((𝐹𝐵) Fn 𝐵𝐵𝐴))
 
Theoremfnssres 5236 Restriction of a function with a subclass of its domain. (Contributed by NM, 2-Aug-1994.)
((𝐹 Fn 𝐴𝐵𝐴) → (𝐹𝐵) Fn 𝐵)
 
Theoremfnresin1 5237 Restriction of a function's domain with an intersection. (Contributed by NM, 9-Aug-1994.)
(𝐹 Fn 𝐴 → (𝐹 ↾ (𝐴𝐵)) Fn (𝐴𝐵))
 
Theoremfnresin2 5238 Restriction of a function's domain with an intersection. (Contributed by NM, 9-Aug-1994.)
(𝐹 Fn 𝐴 → (𝐹 ↾ (𝐵𝐴)) Fn (𝐵𝐴))
 
Theoremfnres 5239* An equivalence for functionality of a restriction. Compare dffun8 5151. (Contributed by Mario Carneiro, 20-May-2015.)
((𝐹𝐴) Fn 𝐴 ↔ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦)
 
Theoremfnresi 5240 Functionality and domain of restricted identity. (Contributed by NM, 27-Aug-2004.)
( I ↾ 𝐴) Fn 𝐴
 
Theoremfnima 5241 The image of a function's domain is its range. (Contributed by NM, 4-Nov-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
(𝐹 Fn 𝐴 → (𝐹𝐴) = ran 𝐹)
 
Theoremfn0 5242 A function with empty domain is empty. (Contributed by NM, 15-Apr-1998.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
(𝐹 Fn ∅ ↔ 𝐹 = ∅)
 
Theoremfnimadisj 5243 A class that is disjoint with the domain of a function has an empty image under the function. (Contributed by FL, 24-Jan-2007.)
((𝐹 Fn 𝐴 ∧ (𝐴𝐶) = ∅) → (𝐹𝐶) = ∅)
 
Theoremfnimaeq0 5244 Images under a function never map nonempty sets to empty sets. (Contributed by Stefan O'Rear, 21-Jan-2015.)
((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = ∅ ↔ 𝐵 = ∅))
 
Theoremdfmpt3 5245 Alternate definition for the maps-to notation df-mpt 3991. (Contributed by Mario Carneiro, 30-Dec-2016.)
(𝑥𝐴𝐵) = 𝑥𝐴 ({𝑥} × {𝐵})
 
Theoremfnopabg 5246* Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 30-Jan-2004.) (Proof shortened by Mario Carneiro, 4-Dec-2016.)
𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}       (∀𝑥𝐴 ∃!𝑦𝜑𝐹 Fn 𝐴)
 
Theoremfnopab 5247* Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 5-Mar-1996.)
(𝑥𝐴 → ∃!𝑦𝜑)    &   𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}       𝐹 Fn 𝐴
 
Theoremmptfng 5248* The maps-to notation defines a function with domain. (Contributed by Scott Fenton, 21-Mar-2011.)
𝐹 = (𝑥𝐴𝐵)       (∀𝑥𝐴 𝐵 ∈ V ↔ 𝐹 Fn 𝐴)
 
Theoremfnmpt 5249* The maps-to notation defines a function with domain. (Contributed by NM, 9-Apr-2013.)
𝐹 = (𝑥𝐴𝐵)       (∀𝑥𝐴 𝐵𝑉𝐹 Fn 𝐴)
 
Theoremmpt0 5250 A mapping operation with empty domain. (Contributed by Mario Carneiro, 28-Dec-2014.)
(𝑥 ∈ ∅ ↦ 𝐴) = ∅
 
Theoremfnmpti 5251* Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
𝐵 ∈ V    &   𝐹 = (𝑥𝐴𝐵)       𝐹 Fn 𝐴
 
Theoremdmmpti 5252* Domain of an ordered-pair class abstraction that specifies a function. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 31-Aug-2015.)
𝐵 ∈ V    &   𝐹 = (𝑥𝐴𝐵)       dom 𝐹 = 𝐴
 
Theoremdmmptd 5253* The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
𝐴 = (𝑥𝐵𝐶)    &   ((𝜑𝑥𝐵) → 𝐶𝑉)       (𝜑 → dom 𝐴 = 𝐵)
 
Theoremmptun 5254 Union of mappings which are mutually compatible. (Contributed by Mario Carneiro, 31-Aug-2015.)
(𝑥 ∈ (𝐴𝐵) ↦ 𝐶) = ((𝑥𝐴𝐶) ∪ (𝑥𝐵𝐶))
 
Theoremfeq1 5255 Equality theorem for functions. (Contributed by NM, 1-Aug-1994.)
(𝐹 = 𝐺 → (𝐹:𝐴𝐵𝐺:𝐴𝐵))
 
Theoremfeq2 5256 Equality theorem for functions. (Contributed by NM, 1-Aug-1994.)
(𝐴 = 𝐵 → (𝐹:𝐴𝐶𝐹:𝐵𝐶))
 
Theoremfeq3 5257 Equality theorem for functions. (Contributed by NM, 1-Aug-1994.)
(𝐴 = 𝐵 → (𝐹:𝐶𝐴𝐹:𝐶𝐵))
 
Theoremfeq23 5258 Equality theorem for functions. (Contributed by FL, 14-Jul-2007.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
((𝐴 = 𝐶𝐵 = 𝐷) → (𝐹:𝐴𝐵𝐹:𝐶𝐷))
 
Theoremfeq1d 5259 Equality deduction for functions. (Contributed by NM, 19-Feb-2008.)
(𝜑𝐹 = 𝐺)       (𝜑 → (𝐹:𝐴𝐵𝐺:𝐴𝐵))
 
Theoremfeq2d 5260 Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐹:𝐴𝐶𝐹:𝐵𝐶))
 
Theoremfeq3d 5261 Equality deduction for functions. (Contributed by AV, 1-Jan-2020.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐹:𝑋𝐴𝐹:𝑋𝐵))
 
Theoremfeq12d 5262 Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
(𝜑𝐹 = 𝐺)    &   (𝜑𝐴 = 𝐵)       (𝜑 → (𝐹:𝐴𝐶𝐺:𝐵𝐶))
 
Theoremfeq123d 5263 Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
(𝜑𝐹 = 𝐺)    &   (𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → (𝐹:𝐴𝐶𝐺:𝐵𝐷))
 
Theoremfeq123 5264 Equality theorem for functions. (Contributed by FL, 16-Nov-2008.)
((𝐹 = 𝐺𝐴 = 𝐶𝐵 = 𝐷) → (𝐹:𝐴𝐵𝐺:𝐶𝐷))
 
Theoremfeq1i 5265 Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
𝐹 = 𝐺       (𝐹:𝐴𝐵𝐺:𝐴𝐵)
 
Theoremfeq2i 5266 Equality inference for functions. (Contributed by NM, 5-Sep-2011.)
𝐴 = 𝐵       (𝐹:𝐴𝐶𝐹:𝐵𝐶)
 
Theoremfeq23i 5267 Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
𝐴 = 𝐶    &   𝐵 = 𝐷       (𝐹:𝐴𝐵𝐹:𝐶𝐷)
 
Theoremfeq23d 5268 Equality deduction for functions. (Contributed by NM, 8-Jun-2013.)
(𝜑𝐴 = 𝐶)    &   (𝜑𝐵 = 𝐷)       (𝜑 → (𝐹:𝐴𝐵𝐹:𝐶𝐷))
 
Theoremnff 5269 Bound-variable hypothesis builder for a mapping. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑥𝐹    &   𝑥𝐴    &   𝑥𝐵       𝑥 𝐹:𝐴𝐵
 
Theoremsbcfng 5270* Distribute proper substitution through the function predicate with a domain. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
(𝑋𝑉 → ([𝑋 / 𝑥]𝐹 Fn 𝐴𝑋 / 𝑥𝐹 Fn 𝑋 / 𝑥𝐴))
 
Theoremsbcfg 5271* Distribute proper substitution through the function predicate with domain and codomain. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
(𝑋𝑉 → ([𝑋 / 𝑥]𝐹:𝐴𝐵𝑋 / 𝑥𝐹:𝑋 / 𝑥𝐴𝑋 / 𝑥𝐵))
 
Theoremffn 5272 A mapping is a function. (Contributed by NM, 2-Aug-1994.)
(𝐹:𝐴𝐵𝐹 Fn 𝐴)
 
Theoremffnd 5273 A mapping is a function with domain, deduction form. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝐹:𝐴𝐵)       (𝜑𝐹 Fn 𝐴)
 
Theoremdffn2 5274 Any function is a mapping into V. (Contributed by NM, 31-Oct-1995.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
(𝐹 Fn 𝐴𝐹:𝐴⟶V)
 
Theoremffun 5275 A mapping is a function. (Contributed by NM, 3-Aug-1994.)
(𝐹:𝐴𝐵 → Fun 𝐹)
 
Theoremffund 5276 A mapping is a function, deduction version. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(𝜑𝐹:𝐴𝐵)       (𝜑 → Fun 𝐹)
 
Theoremfrel 5277 A mapping is a relation. (Contributed by NM, 3-Aug-1994.)
(𝐹:𝐴𝐵 → Rel 𝐹)
 
Theoremfdm 5278 The domain of a mapping. (Contributed by NM, 2-Aug-1994.)
(𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
 
Theoremfdmd 5279 Deduction form of fdm 5278. The domain of a mapping. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝐹:𝐴𝐵)       (𝜑 → dom 𝐹 = 𝐴)
 
Theoremfdmi 5280 The domain of a mapping. (Contributed by NM, 28-Jul-2008.)
𝐹:𝐴𝐵       dom 𝐹 = 𝐴
 
Theoremfrn 5281 The range of a mapping. (Contributed by NM, 3-Aug-1994.)
(𝐹:𝐴𝐵 → ran 𝐹𝐵)
 
Theoremfrnd 5282 Deduction form of frn 5281. The range of a mapping. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝐹:𝐴𝐵)       (𝜑 → ran 𝐹𝐵)
 
Theoremdffn3 5283 A function maps to its range. (Contributed by NM, 1-Sep-1999.)
(𝐹 Fn 𝐴𝐹:𝐴⟶ran 𝐹)
 
Theoremfss 5284 Expanding the codomain of a mapping. (Contributed by NM, 10-May-1998.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
((𝐹:𝐴𝐵𝐵𝐶) → 𝐹:𝐴𝐶)
 
Theoremfssd 5285 Expanding the codomain of a mapping, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐹:𝐴𝐵)    &   (𝜑𝐵𝐶)       (𝜑𝐹:𝐴𝐶)
 
Theoremfssdmd 5286 Expressing that a class is a subclass of the domain of a function expressed in maps-to notation, deduction form. (Contributed by AV, 21-Aug-2022.)
(𝜑𝐹:𝐴𝐵)    &   (𝜑𝐷 ⊆ dom 𝐹)       (𝜑𝐷𝐴)
 
Theoremfssdm 5287 Expressing that a class is a subclass of the domain of a function expressed in maps-to notation, semi-deduction form. (Contributed by AV, 21-Aug-2022.)
𝐷 ⊆ dom 𝐹    &   (𝜑𝐹:𝐴𝐵)       (𝜑𝐷𝐴)
 
Theoremfco 5288 Composition of two mappings. (Contributed by NM, 29-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
((𝐹:𝐵𝐶𝐺:𝐴𝐵) → (𝐹𝐺):𝐴𝐶)
 
Theoremfco2 5289 Functionality of a composition with weakened out of domain condition on the first argument. (Contributed by Stefan O'Rear, 11-Mar-2015.)
(((𝐹𝐵):𝐵𝐶𝐺:𝐴𝐵) → (𝐹𝐺):𝐴𝐶)
 
Theoremfssxp 5290 A mapping is a class of ordered pairs. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
(𝐹:𝐴𝐵𝐹 ⊆ (𝐴 × 𝐵))
 
Theoremfex2 5291 A function with bounded domain and range is a set. This version is proven without the Axiom of Replacement. (Contributed by Mario Carneiro, 24-Jun-2015.)
((𝐹:𝐴𝐵𝐴𝑉𝐵𝑊) → 𝐹 ∈ V)
 
Theoremfunssxp 5292 Two ways of specifying a partial function from 𝐴 to 𝐵. (Contributed by NM, 13-Nov-2007.)
((Fun 𝐹𝐹 ⊆ (𝐴 × 𝐵)) ↔ (𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐴))
 
Theoremffdm 5293 A mapping is a partial function. (Contributed by NM, 25-Nov-2007.)
(𝐹:𝐴𝐵 → (𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐴))
 
Theoremopelf 5294 The members of an ordered pair element of a mapping belong to the mapping's domain and codomain. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
((𝐹:𝐴𝐵 ∧ ⟨𝐶, 𝐷⟩ ∈ 𝐹) → (𝐶𝐴𝐷𝐵))
 
Theoremfun 5295 The union of two functions with disjoint domains. (Contributed by NM, 22-Sep-2004.)
(((𝐹:𝐴𝐶𝐺:𝐵𝐷) ∧ (𝐴𝐵) = ∅) → (𝐹𝐺):(𝐴𝐵)⟶(𝐶𝐷))
 
Theoremfun2 5296 The union of two functions with disjoint domains. (Contributed by Mario Carneiro, 12-Mar-2015.)
(((𝐹:𝐴𝐶𝐺:𝐵𝐶) ∧ (𝐴𝐵) = ∅) → (𝐹𝐺):(𝐴𝐵)⟶𝐶)
 
Theoremfnfco 5297 Composition of two functions. (Contributed by NM, 22-May-2006.)
((𝐹 Fn 𝐴𝐺:𝐵𝐴) → (𝐹𝐺) Fn 𝐵)
 
Theoremfssres 5298 Restriction of a function with a subclass of its domain. (Contributed by NM, 23-Sep-2004.)
((𝐹:𝐴𝐵𝐶𝐴) → (𝐹𝐶):𝐶𝐵)
 
Theoremfssresd 5299 Restriction of a function with a subclass of its domain, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐹:𝐴𝐵)    &   (𝜑𝐶𝐴)       (𝜑 → (𝐹𝐶):𝐶𝐵)
 
Theoremfssres2 5300 Restriction of a restricted function with a subclass of its domain. (Contributed by NM, 21-Jul-2005.)
(((𝐹𝐴):𝐴𝐵𝐶𝐴) → (𝐹𝐶):𝐶𝐵)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13250
  Copyright terms: Public domain < Previous  Next >