ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsn GIF version

Theorem fsn 5362
Description: A function maps a singleton to a singleton iff it is the singleton of an ordered pair. (Contributed by NM, 10-Dec-2003.)
Hypotheses
Ref Expression
fsn.1 𝐴 ∈ V
fsn.2 𝐵 ∈ V
Assertion
Ref Expression
fsn (𝐹:{𝐴}⟶{𝐵} ↔ 𝐹 = {⟨𝐴, 𝐵⟩})

Proof of Theorem fsn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opelf 5089 . . . . . . . 8 ((𝐹:{𝐴}⟶{𝐵} ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐵}))
2 velsn 3419 . . . . . . . . 9 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
3 velsn 3419 . . . . . . . . 9 (𝑦 ∈ {𝐵} ↔ 𝑦 = 𝐵)
42, 3anbi12i 441 . . . . . . . 8 ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐵}) ↔ (𝑥 = 𝐴𝑦 = 𝐵))
51, 4sylib 131 . . . . . . 7 ((𝐹:{𝐴}⟶{𝐵} ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → (𝑥 = 𝐴𝑦 = 𝐵))
65ex 112 . . . . . 6 (𝐹:{𝐴}⟶{𝐵} → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → (𝑥 = 𝐴𝑦 = 𝐵)))
7 fsn.1 . . . . . . . . . 10 𝐴 ∈ V
87snid 3429 . . . . . . . . 9 𝐴 ∈ {𝐴}
9 feu 5099 . . . . . . . . 9 ((𝐹:{𝐴}⟶{𝐵} ∧ 𝐴 ∈ {𝐴}) → ∃!𝑦 ∈ {𝐵}⟨𝐴, 𝑦⟩ ∈ 𝐹)
108, 9mpan2 409 . . . . . . . 8 (𝐹:{𝐴}⟶{𝐵} → ∃!𝑦 ∈ {𝐵}⟨𝐴, 𝑦⟩ ∈ 𝐹)
113anbi1i 439 . . . . . . . . . . 11 ((𝑦 ∈ {𝐵} ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) ↔ (𝑦 = 𝐵 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹))
12 opeq2 3577 . . . . . . . . . . . . . 14 (𝑦 = 𝐵 → ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
1312eleq1d 2122 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → (⟨𝐴, 𝑦⟩ ∈ 𝐹 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐹))
1413pm5.32i 435 . . . . . . . . . . . 12 ((𝑦 = 𝐵 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) ↔ (𝑦 = 𝐵 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐹))
15 ancom 257 . . . . . . . . . . . 12 ((⟨𝐴, 𝐵⟩ ∈ 𝐹𝑦 = 𝐵) ↔ (𝑦 = 𝐵 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐹))
1614, 15bitr4i 180 . . . . . . . . . . 11 ((𝑦 = 𝐵 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝐹𝑦 = 𝐵))
1711, 16bitr2i 178 . . . . . . . . . 10 ((⟨𝐴, 𝐵⟩ ∈ 𝐹𝑦 = 𝐵) ↔ (𝑦 ∈ {𝐵} ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹))
1817eubii 1925 . . . . . . . . 9 (∃!𝑦(⟨𝐴, 𝐵⟩ ∈ 𝐹𝑦 = 𝐵) ↔ ∃!𝑦(𝑦 ∈ {𝐵} ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹))
19 fsn.2 . . . . . . . . . . . 12 𝐵 ∈ V
2019eueq1 2735 . . . . . . . . . . 11 ∃!𝑦 𝑦 = 𝐵
2120biantru 290 . . . . . . . . . 10 (⟨𝐴, 𝐵⟩ ∈ 𝐹 ↔ (⟨𝐴, 𝐵⟩ ∈ 𝐹 ∧ ∃!𝑦 𝑦 = 𝐵))
22 euanv 1973 . . . . . . . . . 10 (∃!𝑦(⟨𝐴, 𝐵⟩ ∈ 𝐹𝑦 = 𝐵) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝐹 ∧ ∃!𝑦 𝑦 = 𝐵))
2321, 22bitr4i 180 . . . . . . . . 9 (⟨𝐴, 𝐵⟩ ∈ 𝐹 ↔ ∃!𝑦(⟨𝐴, 𝐵⟩ ∈ 𝐹𝑦 = 𝐵))
24 df-reu 2330 . . . . . . . . 9 (∃!𝑦 ∈ {𝐵}⟨𝐴, 𝑦⟩ ∈ 𝐹 ↔ ∃!𝑦(𝑦 ∈ {𝐵} ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹))
2518, 23, 243bitr4i 205 . . . . . . . 8 (⟨𝐴, 𝐵⟩ ∈ 𝐹 ↔ ∃!𝑦 ∈ {𝐵}⟨𝐴, 𝑦⟩ ∈ 𝐹)
2610, 25sylibr 141 . . . . . . 7 (𝐹:{𝐴}⟶{𝐵} → ⟨𝐴, 𝐵⟩ ∈ 𝐹)
27 opeq12 3578 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵) → ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
2827eleq1d 2122 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐹))
2926, 28syl5ibrcom 150 . . . . . 6 (𝐹:{𝐴}⟶{𝐵} → ((𝑥 = 𝐴𝑦 = 𝐵) → ⟨𝑥, 𝑦⟩ ∈ 𝐹))
306, 29impbid 124 . . . . 5 (𝐹:{𝐴}⟶{𝐵} → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ (𝑥 = 𝐴𝑦 = 𝐵)))
31 vex 2577 . . . . . . . 8 𝑥 ∈ V
32 vex 2577 . . . . . . . 8 𝑦 ∈ V
3331, 32opex 3993 . . . . . . 7 𝑥, 𝑦⟩ ∈ V
3433elsn 3418 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
357, 19opth2 4004 . . . . . 6 (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝑥 = 𝐴𝑦 = 𝐵))
3634, 35bitr2i 178 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩})
3730, 36syl6bb 189 . . . 4 (𝐹:{𝐴}⟶{𝐵} → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩}))
3837alrimivv 1771 . . 3 (𝐹:{𝐴}⟶{𝐵} → ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩}))
39 frel 5076 . . . 4 (𝐹:{𝐴}⟶{𝐵} → Rel 𝐹)
407, 19relsnop 4471 . . . 4 Rel {⟨𝐴, 𝐵⟩}
41 eqrel 4456 . . . 4 ((Rel 𝐹 ∧ Rel {⟨𝐴, 𝐵⟩}) → (𝐹 = {⟨𝐴, 𝐵⟩} ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩})))
4239, 40, 41sylancl 398 . . 3 (𝐹:{𝐴}⟶{𝐵} → (𝐹 = {⟨𝐴, 𝐵⟩} ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩})))
4338, 42mpbird 160 . 2 (𝐹:{𝐴}⟶{𝐵} → 𝐹 = {⟨𝐴, 𝐵⟩})
447, 19f1osn 5193 . . . 4 {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵}
45 f1oeq1 5144 . . . 4 (𝐹 = {⟨𝐴, 𝐵⟩} → (𝐹:{𝐴}–1-1-onto→{𝐵} ↔ {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵}))
4644, 45mpbiri 161 . . 3 (𝐹 = {⟨𝐴, 𝐵⟩} → 𝐹:{𝐴}–1-1-onto→{𝐵})
47 f1of 5153 . . 3 (𝐹:{𝐴}–1-1-onto→{𝐵} → 𝐹:{𝐴}⟶{𝐵})
4846, 47syl 14 . 2 (𝐹 = {⟨𝐴, 𝐵⟩} → 𝐹:{𝐴}⟶{𝐵})
4943, 48impbii 121 1 (𝐹:{𝐴}⟶{𝐵} ↔ 𝐹 = {⟨𝐴, 𝐵⟩})
Colors of variables: wff set class
Syntax hints:  wa 101  wb 102  wal 1257   = wceq 1259  wcel 1409  ∃!weu 1916  ∃!wreu 2325  Vcvv 2574  {csn 3402  cop 3405  Rel wrel 4377  wf 4925  1-1-ontowf1o 4928
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-reu 2330  df-v 2576  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-br 3792  df-opab 3846  df-id 4057  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936
This theorem is referenced by:  fsng  5363
  Copyright terms: Public domain W3C validator