ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapdm0 GIF version

Theorem mapdm0 6557
Description: The empty set is the only map with empty domain. (Contributed by Glauco Siliprandi, 11-Oct-2020.) (Proof shortened by Thierry Arnoux, 3-Dec-2021.)
Assertion
Ref Expression
mapdm0 (𝐵𝑉 → (𝐵𝑚 ∅) = {∅})

Proof of Theorem mapdm0
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 0ex 4055 . . . . 5 ∅ ∈ V
2 elmapg 6555 . . . . 5 ((𝐵𝑉 ∧ ∅ ∈ V) → (𝑓 ∈ (𝐵𝑚 ∅) ↔ 𝑓:∅⟶𝐵))
31, 2mpan2 421 . . . 4 (𝐵𝑉 → (𝑓 ∈ (𝐵𝑚 ∅) ↔ 𝑓:∅⟶𝐵))
4 f0bi 5315 . . . 4 (𝑓:∅⟶𝐵𝑓 = ∅)
53, 4syl6bb 195 . . 3 (𝐵𝑉 → (𝑓 ∈ (𝐵𝑚 ∅) ↔ 𝑓 = ∅))
6 vex 2689 . . . 4 𝑓 ∈ V
76elsn 3543 . . 3 (𝑓 ∈ {∅} ↔ 𝑓 = ∅)
85, 7syl6bbr 197 . 2 (𝐵𝑉 → (𝑓 ∈ (𝐵𝑚 ∅) ↔ 𝑓 ∈ {∅}))
98eqrdv 2137 1 (𝐵𝑉 → (𝐵𝑚 ∅) = {∅})
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1331  wcel 1480  Vcvv 2686  c0 3363  {csn 3527  wf 5119  (class class class)co 5774  𝑚 cmap 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-map 6544
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator