![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nffrec | GIF version |
Description: Bound-variable hypothesis builder for the finite recursive definition generator. (Contributed by Jim Kingdon, 30-May-2020.) |
Ref | Expression |
---|---|
nffrec.1 | ⊢ Ⅎ𝑥𝐹 |
nffrec.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nffrec | ⊢ Ⅎ𝑥frec(𝐹, 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-frec 6040 | . 2 ⊢ frec(𝐹, 𝐴) = (recs((𝑔 ∈ V ↦ {𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦 ∈ 𝐴))})) ↾ ω) | |
2 | nfcv 2220 | . . . . 5 ⊢ Ⅎ𝑥V | |
3 | nfcv 2220 | . . . . . . . 8 ⊢ Ⅎ𝑥ω | |
4 | nfv 1462 | . . . . . . . . 9 ⊢ Ⅎ𝑥dom 𝑔 = suc 𝑚 | |
5 | nffrec.1 | . . . . . . . . . . 11 ⊢ Ⅎ𝑥𝐹 | |
6 | nfcv 2220 | . . . . . . . . . . 11 ⊢ Ⅎ𝑥(𝑔‘𝑚) | |
7 | 5, 6 | nffv 5216 | . . . . . . . . . 10 ⊢ Ⅎ𝑥(𝐹‘(𝑔‘𝑚)) |
8 | 7 | nfcri 2214 | . . . . . . . . 9 ⊢ Ⅎ𝑥 𝑦 ∈ (𝐹‘(𝑔‘𝑚)) |
9 | 4, 8 | nfan 1498 | . . . . . . . 8 ⊢ Ⅎ𝑥(dom 𝑔 = suc 𝑚 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑚))) |
10 | 3, 9 | nfrexya 2406 | . . . . . . 7 ⊢ Ⅎ𝑥∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑚))) |
11 | nfv 1462 | . . . . . . . 8 ⊢ Ⅎ𝑥dom 𝑔 = ∅ | |
12 | nffrec.2 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝐴 | |
13 | 12 | nfcri 2214 | . . . . . . . 8 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
14 | 11, 13 | nfan 1498 | . . . . . . 7 ⊢ Ⅎ𝑥(dom 𝑔 = ∅ ∧ 𝑦 ∈ 𝐴) |
15 | 10, 14 | nfor 1507 | . . . . . 6 ⊢ Ⅎ𝑥(∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦 ∈ 𝐴)) |
16 | 15 | nfab 2224 | . . . . 5 ⊢ Ⅎ𝑥{𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦 ∈ 𝐴))} |
17 | 2, 16 | nfmpt 3878 | . . . 4 ⊢ Ⅎ𝑥(𝑔 ∈ V ↦ {𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦 ∈ 𝐴))}) |
18 | 17 | nfrecs 5956 | . . 3 ⊢ Ⅎ𝑥recs((𝑔 ∈ V ↦ {𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦 ∈ 𝐴))})) |
19 | 18, 3 | nfres 4642 | . 2 ⊢ Ⅎ𝑥(recs((𝑔 ∈ V ↦ {𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦 ∈ 𝐴))})) ↾ ω) |
20 | 1, 19 | nfcxfr 2217 | 1 ⊢ Ⅎ𝑥frec(𝐹, 𝐴) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 ∨ wo 662 = wceq 1285 ∈ wcel 1434 {cab 2068 Ⅎwnfc 2207 ∃wrex 2350 Vcvv 2602 ∅c0 3258 ↦ cmpt 3847 suc csuc 4128 ωcom 4339 dom cdm 4371 ↾ cres 4373 ‘cfv 4932 recscrecs 5953 freccfrec 6039 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ral 2354 df-rex 2355 df-rab 2358 df-v 2604 df-un 2978 df-in 2980 df-sn 3412 df-pr 3413 df-op 3415 df-uni 3610 df-br 3794 df-opab 3848 df-mpt 3849 df-xp 4377 df-res 4383 df-iota 4897 df-fv 4940 df-recs 5954 df-frec 6040 |
This theorem is referenced by: nfiseq 9528 |
Copyright terms: Public domain | W3C validator |