![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0addcli | GIF version |
Description: Closure of addition of nonnegative integers, inference form. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
nn0addcl.1 | ⊢ 𝑀 ∈ ℕ0 |
nn0addcl.2 | ⊢ 𝑁 ∈ ℕ0 |
Ref | Expression |
---|---|
nn0addcli | ⊢ (𝑀 + 𝑁) ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0addcl.1 | . 2 ⊢ 𝑀 ∈ ℕ0 | |
2 | nn0addcl.2 | . 2 ⊢ 𝑁 ∈ ℕ0 | |
3 | nn0addcl 8442 | . 2 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0) | |
4 | 1, 2, 3 | mp2an 417 | 1 ⊢ (𝑀 + 𝑁) ∈ ℕ0 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1434 (class class class)co 5563 + caddc 7098 ℕ0cn0 8407 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3916 ax-cnex 7181 ax-resscn 7182 ax-1cn 7183 ax-1re 7184 ax-icn 7185 ax-addcl 7186 ax-addrcl 7187 ax-mulcl 7188 ax-addcom 7190 ax-addass 7192 ax-i2m1 7195 ax-0id 7198 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ral 2358 df-rex 2359 df-rab 2362 df-v 2612 df-un 2986 df-in 2988 df-ss 2995 df-sn 3422 df-pr 3423 df-op 3425 df-uni 3622 df-int 3657 df-br 3806 df-iota 4917 df-fv 4960 df-ov 5566 df-inn 8159 df-n0 8408 |
This theorem is referenced by: numcl 8622 deccl 8624 numsucc 8649 |
Copyright terms: Public domain | W3C validator |