![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > onm | GIF version |
Description: The class of all ordinal numbers is inhabited. (Contributed by Jim Kingdon, 6-Mar-2019.) |
Ref | Expression |
---|---|
onm | ⊢ ∃𝑥 𝑥 ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elon 4175 | . . 3 ⊢ ∅ ∈ On | |
2 | 0ex 3925 | . . . 4 ⊢ ∅ ∈ V | |
3 | eleq1 2145 | . . . 4 ⊢ (𝑥 = ∅ → (𝑥 ∈ On ↔ ∅ ∈ On)) | |
4 | 2, 3 | ceqsexv 2647 | . . 3 ⊢ (∃𝑥(𝑥 = ∅ ∧ 𝑥 ∈ On) ↔ ∅ ∈ On) |
5 | 1, 4 | mpbir 144 | . 2 ⊢ ∃𝑥(𝑥 = ∅ ∧ 𝑥 ∈ On) |
6 | exsimpr 1550 | . 2 ⊢ (∃𝑥(𝑥 = ∅ ∧ 𝑥 ∈ On) → ∃𝑥 𝑥 ∈ On) | |
7 | 5, 6 | ax-mp 7 | 1 ⊢ ∃𝑥 𝑥 ∈ On |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 = wceq 1285 ∃wex 1422 ∈ wcel 1434 ∅c0 3267 Oncon0 4146 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-nul 3924 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ral 2358 df-rex 2359 df-v 2612 df-dif 2984 df-in 2988 df-ss 2995 df-nul 3268 df-pw 3402 df-uni 3622 df-tr 3896 df-iord 4149 df-on 4151 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |