![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > onprc | GIF version |
Description: No set contains all ordinal numbers. Proposition 7.13 of [TakeutiZaring] p. 38. This is also known as the Burali-Forti paradox (remark in [Enderton] p. 194). In 1897, Cesare Burali-Forti noticed that since the "set" of all ordinal numbers is an ordinal class (ordon 4178), it must be both an element of the set of all ordinal numbers yet greater than every such element. ZF set theory resolves this paradox by not allowing the class of all ordinal numbers to be a set (so instead it is a proper class). Here we prove the denial of its existence. (Contributed by NM, 18-May-1994.) |
Ref | Expression |
---|---|
onprc | ⊢ ¬ On ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordon 4178 | . . 3 ⊢ Ord On | |
2 | ordirr 4225 | . . 3 ⊢ (Ord On → ¬ On ∈ On) | |
3 | 1, 2 | ax-mp 7 | . 2 ⊢ ¬ On ∈ On |
4 | elong 4076 | . . 3 ⊢ (On ∈ V → (On ∈ On ↔ Ord On)) | |
5 | 1, 4 | mpbiri 157 | . 2 ⊢ (On ∈ V → On ∈ On) |
6 | 3, 5 | mto 587 | 1 ⊢ ¬ On ∈ V |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∈ wcel 1390 Vcvv 2551 Ord word 4065 Oncon0 4066 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 629 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-10 1393 ax-11 1394 ax-i12 1395 ax-bndl 1396 ax-4 1397 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 ax-ext 2019 ax-setind 4220 |
This theorem depends on definitions: df-bi 110 df-3an 886 df-tru 1245 df-nf 1347 df-sb 1643 df-clab 2024 df-cleq 2030 df-clel 2033 df-nfc 2164 df-ne 2203 df-ral 2305 df-rex 2306 df-v 2553 df-dif 2914 df-in 2918 df-ss 2925 df-sn 3373 df-uni 3572 df-tr 3846 df-iord 4069 df-on 4071 |
This theorem is referenced by: sucon 4231 |
Copyright terms: Public domain | W3C validator |