ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elong GIF version

Theorem elong 4136
Description: An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994.)
Assertion
Ref Expression
elong (𝐴𝑉 → (𝐴 ∈ On ↔ Ord 𝐴))

Proof of Theorem elong
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ordeq 4135 . 2 (𝑥 = 𝐴 → (Ord 𝑥 ↔ Ord 𝐴))
2 df-on 4131 . 2 On = {𝑥 ∣ Ord 𝑥}
31, 2elab2g 2741 1 (𝐴𝑉 → (𝐴 ∈ On ↔ Ord 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103  wcel 1434  Ord word 4125  Oncon0 4126
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-in 2980  df-ss 2987  df-uni 3610  df-tr 3884  df-iord 4129  df-on 4131
This theorem is referenced by:  elon  4137  eloni  4138  elon2  4139  ordelon  4146  onin  4149  limelon  4162  ssonuni  4240  suceloni  4253  sucelon  4255  onintonm  4269  onprc  4303  omelon2  4356  bj-nnelon  10912
  Copyright terms: Public domain W3C validator