ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovprc2 GIF version

Theorem ovprc2 5570
Description: The value of an operation when the second argument is a proper class. (Contributed by Mario Carneiro, 26-Apr-2015.)
Hypothesis
Ref Expression
ovprc1.1 Rel dom 𝐹
Assertion
Ref Expression
ovprc2 𝐵 ∈ V → (𝐴𝐹𝐵) = ∅)

Proof of Theorem ovprc2
StepHypRef Expression
1 simpr 107 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐵 ∈ V)
21con3i 572 . 2 𝐵 ∈ V → ¬ (𝐴 ∈ V ∧ 𝐵 ∈ V))
3 ovprc1.1 . . 3 Rel dom 𝐹
43ovprc 5568 . 2 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅)
52, 4syl 14 1 𝐵 ∈ V → (𝐴𝐹𝐵) = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 101   = wceq 1259  wcel 1409  Vcvv 2574  c0 3252  dom cdm 4373  Rel wrel 4378  (class class class)co 5540
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-br 3793  df-opab 3847  df-xp 4379  df-rel 4380  df-dm 4383  df-iota 4895  df-fv 4938  df-ov 5543
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator