Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm13.183 GIF version

Theorem pm13.183 2704
 Description: Compare theorem *13.183 in [WhiteheadRussell] p. 178. Only 𝐴 is required to be a set. (Contributed by Andrew Salmon, 3-Jun-2011.)
Assertion
Ref Expression
pm13.183 (𝐴𝑉 → (𝐴 = 𝐵 ↔ ∀𝑧(𝑧 = 𝐴𝑧 = 𝐵)))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵
Allowed substitution hint:   𝑉(𝑧)

Proof of Theorem pm13.183
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2062 . 2 (𝑦 = 𝐴 → (𝑦 = 𝐵𝐴 = 𝐵))
2 eqeq2 2065 . . . 4 (𝑦 = 𝐴 → (𝑧 = 𝑦𝑧 = 𝐴))
32bibi1d 226 . . 3 (𝑦 = 𝐴 → ((𝑧 = 𝑦𝑧 = 𝐵) ↔ (𝑧 = 𝐴𝑧 = 𝐵)))
43albidv 1721 . 2 (𝑦 = 𝐴 → (∀𝑧(𝑧 = 𝑦𝑧 = 𝐵) ↔ ∀𝑧(𝑧 = 𝐴𝑧 = 𝐵)))
5 eqeq2 2065 . . . 4 (𝑦 = 𝐵 → (𝑧 = 𝑦𝑧 = 𝐵))
65alrimiv 1770 . . 3 (𝑦 = 𝐵 → ∀𝑧(𝑧 = 𝑦𝑧 = 𝐵))
7 stdpc4 1674 . . . 4 (∀𝑧(𝑧 = 𝑦𝑧 = 𝐵) → [𝑦 / 𝑧](𝑧 = 𝑦𝑧 = 𝐵))
8 sbbi 1849 . . . . 5 ([𝑦 / 𝑧](𝑧 = 𝑦𝑧 = 𝐵) ↔ ([𝑦 / 𝑧]𝑧 = 𝑦 ↔ [𝑦 / 𝑧]𝑧 = 𝐵))
9 eqsb3 2157 . . . . . . 7 ([𝑦 / 𝑧]𝑧 = 𝐵𝑦 = 𝐵)
109bibi2i 220 . . . . . 6 (([𝑦 / 𝑧]𝑧 = 𝑦 ↔ [𝑦 / 𝑧]𝑧 = 𝐵) ↔ ([𝑦 / 𝑧]𝑧 = 𝑦𝑦 = 𝐵))
11 equsb1 1684 . . . . . . 7 [𝑦 / 𝑧]𝑧 = 𝑦
12 bi1 115 . . . . . . 7 (([𝑦 / 𝑧]𝑧 = 𝑦𝑦 = 𝐵) → ([𝑦 / 𝑧]𝑧 = 𝑦𝑦 = 𝐵))
1311, 12mpi 15 . . . . . 6 (([𝑦 / 𝑧]𝑧 = 𝑦𝑦 = 𝐵) → 𝑦 = 𝐵)
1410, 13sylbi 118 . . . . 5 (([𝑦 / 𝑧]𝑧 = 𝑦 ↔ [𝑦 / 𝑧]𝑧 = 𝐵) → 𝑦 = 𝐵)
158, 14sylbi 118 . . . 4 ([𝑦 / 𝑧](𝑧 = 𝑦𝑧 = 𝐵) → 𝑦 = 𝐵)
167, 15syl 14 . . 3 (∀𝑧(𝑧 = 𝑦𝑧 = 𝐵) → 𝑦 = 𝐵)
176, 16impbii 121 . 2 (𝑦 = 𝐵 ↔ ∀𝑧(𝑧 = 𝑦𝑧 = 𝐵))
181, 4, 17vtoclbg 2631 1 (𝐴𝑉 → (𝐴 = 𝐵 ↔ ∀𝑧(𝑧 = 𝐴𝑧 = 𝐵)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 102  ∀wal 1257   = wceq 1259   ∈ wcel 1409  [wsb 1661 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038 This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576 This theorem is referenced by:  mpt22eqb  5638
 Copyright terms: Public domain W3C validator