ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm3.35 GIF version

Theorem pm3.35 333
Description: Conjunctive detachment. Theorem *3.35 of [WhiteheadRussell] p. 112. (Contributed by NM, 14-Dec-2002.)
Assertion
Ref Expression
pm3.35 ((𝜑 ∧ (𝜑𝜓)) → 𝜓)

Proof of Theorem pm3.35
StepHypRef Expression
1 pm2.27 39 . 2 (𝜑 → ((𝜑𝜓) → 𝜓))
21imp 119 1 ((𝜑 ∧ (𝜑𝜓)) → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104
This theorem is referenced by:  xordc1  1300  19.35-1  1531  ax9o  1604  sbequ8  1743  r19.29af2  2469  r19.29vva  2473  r19.35-1  2477  intab  3672
  Copyright terms: Public domain W3C validator