Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabexg GIF version

Theorem rabexg 3923
 Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by NM, 23-Oct-1999.)
Assertion
Ref Expression
rabexg (𝐴𝑉 → {𝑥𝐴𝜑} ∈ V)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem rabexg
StepHypRef Expression
1 ssrab2 3080 . 2 {𝑥𝐴𝜑} ⊆ 𝐴
2 ssexg 3919 . 2 (({𝑥𝐴𝜑} ⊆ 𝐴𝐴𝑉) → {𝑥𝐴𝜑} ∈ V)
31, 2mpan 415 1 (𝐴𝑉 → {𝑥𝐴𝜑} ∈ V)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∈ wcel 1434  {crab 2353  Vcvv 2602   ⊆ wss 2974 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3898 This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-rab 2358  df-v 2604  df-in 2980  df-ss 2987 This theorem is referenced by:  rabex  3924  exse  4093  frind  4109  mpt2xopoveq  5883  diffitest  6411
 Copyright terms: Public domain W3C validator