ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabsneu GIF version

Theorem rabsneu 3471
Description: Restricted existential uniqueness determined by a singleton. (Contributed by NM, 29-May-2006.) (Revised by Mario Carneiro, 23-Dec-2016.)
Assertion
Ref Expression
rabsneu ((𝐴𝑉 ∧ {𝑥𝐵𝜑} = {𝐴}) → ∃!𝑥𝐵 𝜑)

Proof of Theorem rabsneu
StepHypRef Expression
1 df-rab 2332 . . . 4 {𝑥𝐵𝜑} = {𝑥 ∣ (𝑥𝐵𝜑)}
21eqeq1i 2063 . . 3 ({𝑥𝐵𝜑} = {𝐴} ↔ {𝑥 ∣ (𝑥𝐵𝜑)} = {𝐴})
3 absneu 3470 . . 3 ((𝐴𝑉 ∧ {𝑥 ∣ (𝑥𝐵𝜑)} = {𝐴}) → ∃!𝑥(𝑥𝐵𝜑))
42, 3sylan2b 275 . 2 ((𝐴𝑉 ∧ {𝑥𝐵𝜑} = {𝐴}) → ∃!𝑥(𝑥𝐵𝜑))
5 df-reu 2330 . 2 (∃!𝑥𝐵 𝜑 ↔ ∃!𝑥(𝑥𝐵𝜑))
64, 5sylibr 141 1 ((𝐴𝑉 ∧ {𝑥𝐵𝜑} = {𝐴}) → ∃!𝑥𝐵 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101   = wceq 1259  wcel 1409  ∃!weu 1916  {cab 2042  ∃!wreu 2325  {crab 2327  {csn 3403
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-reu 2330  df-rab 2332  df-v 2576  df-sn 3409
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator