ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  readdcan GIF version

Theorem readdcan 7213
Description: Cancellation law for addition over the reals. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
readdcan ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 + 𝐴) = (𝐶 + 𝐵) ↔ 𝐴 = 𝐵))

Proof of Theorem readdcan
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ax-rnegex 7050 . . . 4 (𝐶 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐶 + 𝑥) = 0)
213ad2ant3 938 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∃𝑥 ∈ ℝ (𝐶 + 𝑥) = 0)
3 oveq2 5547 . . . . . . 7 ((𝐶 + 𝐴) = (𝐶 + 𝐵) → (𝑥 + (𝐶 + 𝐴)) = (𝑥 + (𝐶 + 𝐵)))
43adantl 266 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → (𝑥 + (𝐶 + 𝐴)) = (𝑥 + (𝐶 + 𝐵)))
5 simprl 491 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → 𝑥 ∈ ℝ)
65recnd 7112 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → 𝑥 ∈ ℂ)
7 simpl3 920 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → 𝐶 ∈ ℝ)
87recnd 7112 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → 𝐶 ∈ ℂ)
9 simpl1 918 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → 𝐴 ∈ ℝ)
109recnd 7112 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → 𝐴 ∈ ℂ)
116, 8, 10addassd 7106 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → ((𝑥 + 𝐶) + 𝐴) = (𝑥 + (𝐶 + 𝐴)))
12 simpl2 919 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → 𝐵 ∈ ℝ)
1312recnd 7112 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → 𝐵 ∈ ℂ)
146, 8, 13addassd 7106 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → ((𝑥 + 𝐶) + 𝐵) = (𝑥 + (𝐶 + 𝐵)))
1511, 14eqeq12d 2070 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → (((𝑥 + 𝐶) + 𝐴) = ((𝑥 + 𝐶) + 𝐵) ↔ (𝑥 + (𝐶 + 𝐴)) = (𝑥 + (𝐶 + 𝐵))))
1615adantr 265 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → (((𝑥 + 𝐶) + 𝐴) = ((𝑥 + 𝐶) + 𝐵) ↔ (𝑥 + (𝐶 + 𝐴)) = (𝑥 + (𝐶 + 𝐵))))
174, 16mpbird 160 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → ((𝑥 + 𝐶) + 𝐴) = ((𝑥 + 𝐶) + 𝐵))
188adantr 265 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → 𝐶 ∈ ℂ)
196adantr 265 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → 𝑥 ∈ ℂ)
20 addcom 7210 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐶 + 𝑥) = (𝑥 + 𝐶))
2118, 19, 20syl2anc 397 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → (𝐶 + 𝑥) = (𝑥 + 𝐶))
22 simplrr 496 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → (𝐶 + 𝑥) = 0)
2321, 22eqtr3d 2090 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → (𝑥 + 𝐶) = 0)
2423oveq1d 5554 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → ((𝑥 + 𝐶) + 𝐴) = (0 + 𝐴))
2510adantr 265 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → 𝐴 ∈ ℂ)
26 addid2 7212 . . . . . . 7 (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴)
2725, 26syl 14 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → (0 + 𝐴) = 𝐴)
2824, 27eqtrd 2088 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → ((𝑥 + 𝐶) + 𝐴) = 𝐴)
2923oveq1d 5554 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → ((𝑥 + 𝐶) + 𝐵) = (0 + 𝐵))
3013adantr 265 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → 𝐵 ∈ ℂ)
31 addid2 7212 . . . . . . 7 (𝐵 ∈ ℂ → (0 + 𝐵) = 𝐵)
3230, 31syl 14 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → (0 + 𝐵) = 𝐵)
3329, 32eqtrd 2088 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → ((𝑥 + 𝐶) + 𝐵) = 𝐵)
3417, 28, 333eqtr3d 2096 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) ∧ (𝐶 + 𝐴) = (𝐶 + 𝐵)) → 𝐴 = 𝐵)
3534ex 112 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ (𝐶 + 𝑥) = 0)) → ((𝐶 + 𝐴) = (𝐶 + 𝐵) → 𝐴 = 𝐵))
362, 35rexlimddv 2454 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 + 𝐴) = (𝐶 + 𝐵) → 𝐴 = 𝐵))
37 oveq2 5547 . 2 (𝐴 = 𝐵 → (𝐶 + 𝐴) = (𝐶 + 𝐵))
3836, 37impbid1 134 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 + 𝐴) = (𝐶 + 𝐵) ↔ 𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102  w3a 896   = wceq 1259  wcel 1409  wrex 2324  (class class class)co 5539  cc 6944  cr 6945  0cc0 6946   + caddc 6949
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-resscn 7033  ax-1cn 7034  ax-icn 7036  ax-addcl 7037  ax-mulcl 7039  ax-addcom 7041  ax-addass 7043  ax-i2m1 7046  ax-0id 7049  ax-rnegex 7050
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-un 2949  df-in 2951  df-ss 2958  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-br 3792  df-iota 4894  df-fv 4937  df-ov 5542
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator