ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  releldm2 GIF version

Theorem releldm2 6083
Description: Two ways of expressing membership in the domain of a relation. (Contributed by NM, 22-Sep-2013.)
Assertion
Ref Expression
releldm2 (Rel 𝐴 → (𝐵 ∈ dom 𝐴 ↔ ∃𝑥𝐴 (1st𝑥) = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem releldm2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elex 2697 . . 3 (𝐵 ∈ dom 𝐴𝐵 ∈ V)
21anim2i 339 . 2 ((Rel 𝐴𝐵 ∈ dom 𝐴) → (Rel 𝐴𝐵 ∈ V))
3 id 19 . . . . 5 ((1st𝑥) = 𝐵 → (1st𝑥) = 𝐵)
4 vex 2689 . . . . . 6 𝑥 ∈ V
5 1stexg 6065 . . . . . 6 (𝑥 ∈ V → (1st𝑥) ∈ V)
64, 5ax-mp 5 . . . . 5 (1st𝑥) ∈ V
73, 6eqeltrrdi 2231 . . . 4 ((1st𝑥) = 𝐵𝐵 ∈ V)
87rexlimivw 2545 . . 3 (∃𝑥𝐴 (1st𝑥) = 𝐵𝐵 ∈ V)
98anim2i 339 . 2 ((Rel 𝐴 ∧ ∃𝑥𝐴 (1st𝑥) = 𝐵) → (Rel 𝐴𝐵 ∈ V))
10 eldm2g 4735 . . . 4 (𝐵 ∈ V → (𝐵 ∈ dom 𝐴 ↔ ∃𝑦𝐵, 𝑦⟩ ∈ 𝐴))
1110adantl 275 . . 3 ((Rel 𝐴𝐵 ∈ V) → (𝐵 ∈ dom 𝐴 ↔ ∃𝑦𝐵, 𝑦⟩ ∈ 𝐴))
12 df-rel 4546 . . . . . . . . 9 (Rel 𝐴𝐴 ⊆ (V × V))
13 ssel 3091 . . . . . . . . 9 (𝐴 ⊆ (V × V) → (𝑥𝐴𝑥 ∈ (V × V)))
1412, 13sylbi 120 . . . . . . . 8 (Rel 𝐴 → (𝑥𝐴𝑥 ∈ (V × V)))
1514imp 123 . . . . . . 7 ((Rel 𝐴𝑥𝐴) → 𝑥 ∈ (V × V))
16 op1steq 6077 . . . . . . 7 (𝑥 ∈ (V × V) → ((1st𝑥) = 𝐵 ↔ ∃𝑦 𝑥 = ⟨𝐵, 𝑦⟩))
1715, 16syl 14 . . . . . 6 ((Rel 𝐴𝑥𝐴) → ((1st𝑥) = 𝐵 ↔ ∃𝑦 𝑥 = ⟨𝐵, 𝑦⟩))
1817rexbidva 2434 . . . . 5 (Rel 𝐴 → (∃𝑥𝐴 (1st𝑥) = 𝐵 ↔ ∃𝑥𝐴𝑦 𝑥 = ⟨𝐵, 𝑦⟩))
1918adantr 274 . . . 4 ((Rel 𝐴𝐵 ∈ V) → (∃𝑥𝐴 (1st𝑥) = 𝐵 ↔ ∃𝑥𝐴𝑦 𝑥 = ⟨𝐵, 𝑦⟩))
20 rexcom4 2709 . . . . 5 (∃𝑥𝐴𝑦 𝑥 = ⟨𝐵, 𝑦⟩ ↔ ∃𝑦𝑥𝐴 𝑥 = ⟨𝐵, 𝑦⟩)
21 risset 2463 . . . . . 6 (⟨𝐵, 𝑦⟩ ∈ 𝐴 ↔ ∃𝑥𝐴 𝑥 = ⟨𝐵, 𝑦⟩)
2221exbii 1584 . . . . 5 (∃𝑦𝐵, 𝑦⟩ ∈ 𝐴 ↔ ∃𝑦𝑥𝐴 𝑥 = ⟨𝐵, 𝑦⟩)
2320, 22bitr4i 186 . . . 4 (∃𝑥𝐴𝑦 𝑥 = ⟨𝐵, 𝑦⟩ ↔ ∃𝑦𝐵, 𝑦⟩ ∈ 𝐴)
2419, 23syl6bb 195 . . 3 ((Rel 𝐴𝐵 ∈ V) → (∃𝑥𝐴 (1st𝑥) = 𝐵 ↔ ∃𝑦𝐵, 𝑦⟩ ∈ 𝐴))
2511, 24bitr4d 190 . 2 ((Rel 𝐴𝐵 ∈ V) → (𝐵 ∈ dom 𝐴 ↔ ∃𝑥𝐴 (1st𝑥) = 𝐵))
262, 9, 25pm5.21nd 901 1 (Rel 𝐴 → (𝐵 ∈ dom 𝐴 ↔ ∃𝑥𝐴 (1st𝑥) = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wex 1468  wcel 1480  wrex 2417  Vcvv 2686  wss 3071  cop 3530   × cxp 4537  dom cdm 4539  Rel wrel 4544  cfv 5123  1st c1st 6036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fo 5129  df-fv 5131  df-1st 6038  df-2nd 6039
This theorem is referenced by:  reldm  6084
  Copyright terms: Public domain W3C validator