ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riota5 GIF version

Theorem riota5 5518
Description: A method for computing restricted iota. (Contributed by NM, 20-Oct-2011.) (Revised by Mario Carneiro, 6-Dec-2016.)
Hypotheses
Ref Expression
riota5.1 (𝜑𝐵𝐴)
riota5.2 ((𝜑𝑥𝐴) → (𝜓𝑥 = 𝐵))
Assertion
Ref Expression
riota5 (𝜑 → (𝑥𝐴 𝜓) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem riota5
StepHypRef Expression
1 nfcvd 2221 . 2 (𝜑𝑥𝐵)
2 riota5.1 . 2 (𝜑𝐵𝐴)
3 riota5.2 . 2 ((𝜑𝑥𝐴) → (𝜓𝑥 = 𝐵))
41, 2, 3riota5f 5517 1 (𝜑 → (𝑥𝐴 𝜓) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1285  wcel 1434  crio 5492
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-reu 2356  df-v 2604  df-sbc 2817  df-un 2978  df-sn 3406  df-pr 3407  df-uni 3604  df-iota 4891  df-riota 5493
This theorem is referenced by:  f1ocnvfv3  5526  caucvgrelemrec  9992  sqrt0  10017  sqrtsq  10057  dfgcd3  10532
  Copyright terms: Public domain W3C validator