Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspc2gv GIF version

Theorem rspc2gv 2713
 Description: Restricted specialization with two quantifiers, using implicit substitution. (Contributed by BJ, 2-Dec-2021.)
Hypothesis
Ref Expression
rspc2gv.1 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
Assertion
Ref Expression
rspc2gv ((𝐴𝑉𝐵𝑊) → (∀𝑥𝑉𝑦𝑊 𝜑𝜓))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑉,𝑦   𝑥,𝑊,𝑦   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem rspc2gv
StepHypRef Expression
1 df-ral 2354 . 2 (∀𝑥𝑉𝑦𝑊 𝜑 ↔ ∀𝑥(𝑥𝑉 → ∀𝑦𝑊 𝜑))
2 df-ral 2354 . . . . 5 (∀𝑦𝑊 𝜑 ↔ ∀𝑦(𝑦𝑊𝜑))
32imbi2i 224 . . . 4 ((𝑥𝑉 → ∀𝑦𝑊 𝜑) ↔ (𝑥𝑉 → ∀𝑦(𝑦𝑊𝜑)))
43albii 1400 . . 3 (∀𝑥(𝑥𝑉 → ∀𝑦𝑊 𝜑) ↔ ∀𝑥(𝑥𝑉 → ∀𝑦(𝑦𝑊𝜑)))
5 19.21v 1795 . . . . . 6 (∀𝑦(𝑥𝑉 → (𝑦𝑊𝜑)) ↔ (𝑥𝑉 → ∀𝑦(𝑦𝑊𝜑)))
65bicomi 130 . . . . 5 ((𝑥𝑉 → ∀𝑦(𝑦𝑊𝜑)) ↔ ∀𝑦(𝑥𝑉 → (𝑦𝑊𝜑)))
76albii 1400 . . . 4 (∀𝑥(𝑥𝑉 → ∀𝑦(𝑦𝑊𝜑)) ↔ ∀𝑥𝑦(𝑥𝑉 → (𝑦𝑊𝜑)))
8 impexp 259 . . . . . . 7 (((𝑥𝑉𝑦𝑊) → 𝜑) ↔ (𝑥𝑉 → (𝑦𝑊𝜑)))
9 eleq1 2142 . . . . . . . . 9 (𝑥 = 𝐴 → (𝑥𝑉𝐴𝑉))
10 eleq1 2142 . . . . . . . . 9 (𝑦 = 𝐵 → (𝑦𝑊𝐵𝑊))
119, 10bi2anan9 571 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥𝑉𝑦𝑊) ↔ (𝐴𝑉𝐵𝑊)))
12 rspc2gv.1 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
1311, 12imbi12d 232 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → (((𝑥𝑉𝑦𝑊) → 𝜑) ↔ ((𝐴𝑉𝐵𝑊) → 𝜓)))
148, 13syl5bbr 192 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥𝑉 → (𝑦𝑊𝜑)) ↔ ((𝐴𝑉𝐵𝑊) → 𝜓)))
1514spc2gv 2689 . . . . 5 ((𝐴𝑉𝐵𝑊) → (∀𝑥𝑦(𝑥𝑉 → (𝑦𝑊𝜑)) → ((𝐴𝑉𝐵𝑊) → 𝜓)))
1615pm2.43a 50 . . . 4 ((𝐴𝑉𝐵𝑊) → (∀𝑥𝑦(𝑥𝑉 → (𝑦𝑊𝜑)) → 𝜓))
177, 16syl5bi 150 . . 3 ((𝐴𝑉𝐵𝑊) → (∀𝑥(𝑥𝑉 → ∀𝑦(𝑦𝑊𝜑)) → 𝜓))
184, 17syl5bi 150 . 2 ((𝐴𝑉𝐵𝑊) → (∀𝑥(𝑥𝑉 → ∀𝑦𝑊 𝜑) → 𝜓))
191, 18syl5bi 150 1 ((𝐴𝑉𝐵𝑊) → (∀𝑥𝑉𝑦𝑊 𝜑𝜓))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 102   ↔ wb 103  ∀wal 1283   = wceq 1285   ∈ wcel 1434  ∀wral 2349 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064 This theorem depends on definitions:  df-bi 115  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-ral 2354  df-v 2604 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator