Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  spc2gv GIF version

Theorem spc2gv 2660
 Description: Specialization with 2 quantifiers, using implicit substitution. (Contributed by NM, 27-Apr-2004.)
Hypothesis
Ref Expression
spc2egv.1 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
Assertion
Ref Expression
spc2gv ((𝐴𝑉𝐵𝑊) → (∀𝑥𝑦𝜑𝜓))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem spc2gv
StepHypRef Expression
1 elisset 2585 . . . 4 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
2 elisset 2585 . . . 4 (𝐵𝑊 → ∃𝑦 𝑦 = 𝐵)
31, 2anim12i 325 . . 3 ((𝐴𝑉𝐵𝑊) → (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵))
4 eeanv 1823 . . 3 (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵) ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵))
53, 4sylibr 141 . 2 ((𝐴𝑉𝐵𝑊) → ∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵))
6 spc2egv.1 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
76biimpcd 152 . . . . 5 (𝜑 → ((𝑥 = 𝐴𝑦 = 𝐵) → 𝜓))
872alimi 1361 . . . 4 (∀𝑥𝑦𝜑 → ∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → 𝜓))
9 exim 1506 . . . . 5 (∀𝑦((𝑥 = 𝐴𝑦 = 𝐵) → 𝜓) → (∃𝑦(𝑥 = 𝐴𝑦 = 𝐵) → ∃𝑦𝜓))
109alimi 1360 . . . 4 (∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → 𝜓) → ∀𝑥(∃𝑦(𝑥 = 𝐴𝑦 = 𝐵) → ∃𝑦𝜓))
11 exim 1506 . . . 4 (∀𝑥(∃𝑦(𝑥 = 𝐴𝑦 = 𝐵) → ∃𝑦𝜓) → (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵) → ∃𝑥𝑦𝜓))
128, 10, 113syl 17 . . 3 (∀𝑥𝑦𝜑 → (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵) → ∃𝑥𝑦𝜓))
13 19.9v 1767 . . . 4 (∃𝑥𝑦𝜓 ↔ ∃𝑦𝜓)
14 19.9v 1767 . . . 4 (∃𝑦𝜓𝜓)
1513, 14bitri 177 . . 3 (∃𝑥𝑦𝜓𝜓)
1612, 15syl6ib 154 . 2 (∀𝑥𝑦𝜑 → (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵) → 𝜓))
175, 16syl5com 29 1 ((𝐴𝑉𝐵𝑊) → (∀𝑥𝑦𝜑𝜓))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 101   ↔ wb 102  ∀wal 1257   = wceq 1259  ∃wex 1397   ∈ wcel 1409 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-ext 2038 This theorem depends on definitions:  df-bi 114  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-v 2576 This theorem is referenced by:  trel  3888  elovmpt2  5728
 Copyright terms: Public domain W3C validator