ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qtopbasss GIF version

Theorem qtopbasss 12690
Description: The set of open intervals with endpoints in a subset forms a basis for a topology. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by Jim Kingdon, 22-May-2023.)
Hypotheses
Ref Expression
qtopbas.1 𝑆 ⊆ ℝ*
qtopbas.max ((𝑥𝑆𝑦𝑆) → sup({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆)
qtopbas.min ((𝑥𝑆𝑦𝑆) → inf({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆)
Assertion
Ref Expression
qtopbasss ((,) “ (𝑆 × 𝑆)) ∈ TopBases
Distinct variable group:   𝑥,𝑦,𝑆

Proof of Theorem qtopbasss
Dummy variables 𝑢 𝑡 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iooex 9690 . . 3 (,) ∈ V
21imaex 4894 . 2 ((,) “ (𝑆 × 𝑆)) ∈ V
3 qtopbas.1 . . . . . . . . 9 𝑆 ⊆ ℝ*
43sseli 3093 . . . . . . . 8 (𝑧𝑆𝑧 ∈ ℝ*)
53sseli 3093 . . . . . . . 8 (𝑤𝑆𝑤 ∈ ℝ*)
64, 5anim12i 336 . . . . . . 7 ((𝑧𝑆𝑤𝑆) → (𝑧 ∈ ℝ*𝑤 ∈ ℝ*))
73sseli 3093 . . . . . . . 8 (𝑣𝑆𝑣 ∈ ℝ*)
83sseli 3093 . . . . . . . 8 (𝑢𝑆𝑢 ∈ ℝ*)
97, 8anim12i 336 . . . . . . 7 ((𝑣𝑆𝑢𝑆) → (𝑣 ∈ ℝ*𝑢 ∈ ℝ*))
10 iooinsup 11046 . . . . . . 7 (((𝑧 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑣 ∈ ℝ*𝑢 ∈ ℝ*)) → ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) = (sup({𝑧, 𝑣}, ℝ*, < )(,)inf({𝑤, 𝑢}, ℝ*, < )))
116, 9, 10syl2an 287 . . . . . 6 (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) = (sup({𝑧, 𝑣}, ℝ*, < )(,)inf({𝑤, 𝑢}, ℝ*, < )))
12 qtopbas.max . . . . . . . . . . 11 ((𝑥𝑆𝑦𝑆) → sup({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆)
1312rgen2a 2486 . . . . . . . . . 10 𝑥𝑆𝑦𝑆 sup({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆
14 preq12 3602 . . . . . . . . . . . . . 14 ((𝑥 = 𝑣𝑦 = 𝑧) → {𝑥, 𝑦} = {𝑣, 𝑧})
15 prcom 3599 . . . . . . . . . . . . . 14 {𝑣, 𝑧} = {𝑧, 𝑣}
1614, 15syl6eq 2188 . . . . . . . . . . . . 13 ((𝑥 = 𝑣𝑦 = 𝑧) → {𝑥, 𝑦} = {𝑧, 𝑣})
1716supeq1d 6874 . . . . . . . . . . . 12 ((𝑥 = 𝑣𝑦 = 𝑧) → sup({𝑥, 𝑦}, ℝ*, < ) = sup({𝑧, 𝑣}, ℝ*, < ))
1817eleq1d 2208 . . . . . . . . . . 11 ((𝑥 = 𝑣𝑦 = 𝑧) → (sup({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆 ↔ sup({𝑧, 𝑣}, ℝ*, < ) ∈ 𝑆))
1918rspc2gv 2801 . . . . . . . . . 10 ((𝑣𝑆𝑧𝑆) → (∀𝑥𝑆𝑦𝑆 sup({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆 → sup({𝑧, 𝑣}, ℝ*, < ) ∈ 𝑆))
2013, 19mpi 15 . . . . . . . . 9 ((𝑣𝑆𝑧𝑆) → sup({𝑧, 𝑣}, ℝ*, < ) ∈ 𝑆)
2120ancoms 266 . . . . . . . 8 ((𝑧𝑆𝑣𝑆) → sup({𝑧, 𝑣}, ℝ*, < ) ∈ 𝑆)
22 qtopbas.min . . . . . . . . . 10 ((𝑥𝑆𝑦𝑆) → inf({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆)
2322rgen2a 2486 . . . . . . . . 9 𝑥𝑆𝑦𝑆 inf({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆
24 preq12 3602 . . . . . . . . . . . 12 ((𝑥 = 𝑤𝑦 = 𝑢) → {𝑥, 𝑦} = {𝑤, 𝑢})
2524infeq1d 6899 . . . . . . . . . . 11 ((𝑥 = 𝑤𝑦 = 𝑢) → inf({𝑥, 𝑦}, ℝ*, < ) = inf({𝑤, 𝑢}, ℝ*, < ))
2625eleq1d 2208 . . . . . . . . . 10 ((𝑥 = 𝑤𝑦 = 𝑢) → (inf({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆 ↔ inf({𝑤, 𝑢}, ℝ*, < ) ∈ 𝑆))
2726rspc2gv 2801 . . . . . . . . 9 ((𝑤𝑆𝑢𝑆) → (∀𝑥𝑆𝑦𝑆 inf({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆 → inf({𝑤, 𝑢}, ℝ*, < ) ∈ 𝑆))
2823, 27mpi 15 . . . . . . . 8 ((𝑤𝑆𝑢𝑆) → inf({𝑤, 𝑢}, ℝ*, < ) ∈ 𝑆)
29 df-ov 5777 . . . . . . . . 9 (sup({𝑧, 𝑣}, ℝ*, < )(,)inf({𝑤, 𝑢}, ℝ*, < )) = ((,)‘⟨sup({𝑧, 𝑣}, ℝ*, < ), inf({𝑤, 𝑢}, ℝ*, < )⟩)
30 opelxpi 4571 . . . . . . . . . 10 ((sup({𝑧, 𝑣}, ℝ*, < ) ∈ 𝑆 ∧ inf({𝑤, 𝑢}, ℝ*, < ) ∈ 𝑆) → ⟨sup({𝑧, 𝑣}, ℝ*, < ), inf({𝑤, 𝑢}, ℝ*, < )⟩ ∈ (𝑆 × 𝑆))
31 ioof 9754 . . . . . . . . . . . 12 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
32 ffun 5275 . . . . . . . . . . . 12 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → Fun (,))
3331, 32ax-mp 5 . . . . . . . . . . 11 Fun (,)
34 xpss12 4646 . . . . . . . . . . . . 13 ((𝑆 ⊆ ℝ*𝑆 ⊆ ℝ*) → (𝑆 × 𝑆) ⊆ (ℝ* × ℝ*))
353, 3, 34mp2an 422 . . . . . . . . . . . 12 (𝑆 × 𝑆) ⊆ (ℝ* × ℝ*)
3631fdmi 5280 . . . . . . . . . . . 12 dom (,) = (ℝ* × ℝ*)
3735, 36sseqtrri 3132 . . . . . . . . . . 11 (𝑆 × 𝑆) ⊆ dom (,)
38 funfvima2 5650 . . . . . . . . . . 11 ((Fun (,) ∧ (𝑆 × 𝑆) ⊆ dom (,)) → (⟨sup({𝑧, 𝑣}, ℝ*, < ), inf({𝑤, 𝑢}, ℝ*, < )⟩ ∈ (𝑆 × 𝑆) → ((,)‘⟨sup({𝑧, 𝑣}, ℝ*, < ), inf({𝑤, 𝑢}, ℝ*, < )⟩) ∈ ((,) “ (𝑆 × 𝑆))))
3933, 37, 38mp2an 422 . . . . . . . . . 10 (⟨sup({𝑧, 𝑣}, ℝ*, < ), inf({𝑤, 𝑢}, ℝ*, < )⟩ ∈ (𝑆 × 𝑆) → ((,)‘⟨sup({𝑧, 𝑣}, ℝ*, < ), inf({𝑤, 𝑢}, ℝ*, < )⟩) ∈ ((,) “ (𝑆 × 𝑆)))
4030, 39syl 14 . . . . . . . . 9 ((sup({𝑧, 𝑣}, ℝ*, < ) ∈ 𝑆 ∧ inf({𝑤, 𝑢}, ℝ*, < ) ∈ 𝑆) → ((,)‘⟨sup({𝑧, 𝑣}, ℝ*, < ), inf({𝑤, 𝑢}, ℝ*, < )⟩) ∈ ((,) “ (𝑆 × 𝑆)))
4129, 40eqeltrid 2226 . . . . . . . 8 ((sup({𝑧, 𝑣}, ℝ*, < ) ∈ 𝑆 ∧ inf({𝑤, 𝑢}, ℝ*, < ) ∈ 𝑆) → (sup({𝑧, 𝑣}, ℝ*, < )(,)inf({𝑤, 𝑢}, ℝ*, < )) ∈ ((,) “ (𝑆 × 𝑆)))
4221, 28, 41syl2an 287 . . . . . . 7 (((𝑧𝑆𝑣𝑆) ∧ (𝑤𝑆𝑢𝑆)) → (sup({𝑧, 𝑣}, ℝ*, < )(,)inf({𝑤, 𝑢}, ℝ*, < )) ∈ ((,) “ (𝑆 × 𝑆)))
4342an4s 577 . . . . . 6 (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → (sup({𝑧, 𝑣}, ℝ*, < )(,)inf({𝑤, 𝑢}, ℝ*, < )) ∈ ((,) “ (𝑆 × 𝑆)))
4411, 43eqeltrd 2216 . . . . 5 (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
4544ralrimivva 2514 . . . 4 ((𝑧𝑆𝑤𝑆) → ∀𝑣𝑆𝑢𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
4645rgen2a 2486 . . 3 𝑧𝑆𝑤𝑆𝑣𝑆𝑢𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆))
47 ffn 5272 . . . . . 6 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
4831, 47ax-mp 5 . . . . 5 (,) Fn (ℝ* × ℝ*)
49 ineq1 3270 . . . . . . . 8 (𝑥 = ((,)‘𝑡) → (𝑥𝑦) = (((,)‘𝑡) ∩ 𝑦))
5049eleq1d 2208 . . . . . . 7 (𝑥 = ((,)‘𝑡) → ((𝑥𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ (((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆))))
5150ralbidv 2437 . . . . . 6 (𝑥 = ((,)‘𝑡) → (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆))))
5251ralima 5657 . . . . 5 (((,) Fn (ℝ* × ℝ*) ∧ (𝑆 × 𝑆) ⊆ (ℝ* × ℝ*)) → (∀𝑥 ∈ ((,) “ (𝑆 × 𝑆))∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑡 ∈ (𝑆 × 𝑆)∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆))))
5348, 35, 52mp2an 422 . . . 4 (∀𝑥 ∈ ((,) “ (𝑆 × 𝑆))∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑡 ∈ (𝑆 × 𝑆)∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)))
54 fveq2 5421 . . . . . . . . . 10 (𝑡 = ⟨𝑧, 𝑤⟩ → ((,)‘𝑡) = ((,)‘⟨𝑧, 𝑤⟩))
55 df-ov 5777 . . . . . . . . . 10 (𝑧(,)𝑤) = ((,)‘⟨𝑧, 𝑤⟩)
5654, 55syl6eqr 2190 . . . . . . . . 9 (𝑡 = ⟨𝑧, 𝑤⟩ → ((,)‘𝑡) = (𝑧(,)𝑤))
5756ineq1d 3276 . . . . . . . 8 (𝑡 = ⟨𝑧, 𝑤⟩ → (((,)‘𝑡) ∩ 𝑦) = ((𝑧(,)𝑤) ∩ 𝑦))
5857eleq1d 2208 . . . . . . 7 (𝑡 = ⟨𝑧, 𝑤⟩ → ((((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆))))
5958ralbidv 2437 . . . . . 6 (𝑡 = ⟨𝑧, 𝑤⟩ → (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆))))
60 ineq2 3271 . . . . . . . . . 10 (𝑦 = ((,)‘𝑡) → ((𝑧(,)𝑤) ∩ 𝑦) = ((𝑧(,)𝑤) ∩ ((,)‘𝑡)))
6160eleq1d 2208 . . . . . . . . 9 (𝑦 = ((,)‘𝑡) → (((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ((𝑧(,)𝑤) ∩ ((,)‘𝑡)) ∈ ((,) “ (𝑆 × 𝑆))))
6261ralima 5657 . . . . . . . 8 (((,) Fn (ℝ* × ℝ*) ∧ (𝑆 × 𝑆) ⊆ (ℝ* × ℝ*)) → (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑡 ∈ (𝑆 × 𝑆)((𝑧(,)𝑤) ∩ ((,)‘𝑡)) ∈ ((,) “ (𝑆 × 𝑆))))
6348, 35, 62mp2an 422 . . . . . . 7 (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑡 ∈ (𝑆 × 𝑆)((𝑧(,)𝑤) ∩ ((,)‘𝑡)) ∈ ((,) “ (𝑆 × 𝑆)))
64 fveq2 5421 . . . . . . . . . . 11 (𝑡 = ⟨𝑣, 𝑢⟩ → ((,)‘𝑡) = ((,)‘⟨𝑣, 𝑢⟩))
65 df-ov 5777 . . . . . . . . . . 11 (𝑣(,)𝑢) = ((,)‘⟨𝑣, 𝑢⟩)
6664, 65syl6eqr 2190 . . . . . . . . . 10 (𝑡 = ⟨𝑣, 𝑢⟩ → ((,)‘𝑡) = (𝑣(,)𝑢))
6766ineq2d 3277 . . . . . . . . 9 (𝑡 = ⟨𝑣, 𝑢⟩ → ((𝑧(,)𝑤) ∩ ((,)‘𝑡)) = ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)))
6867eleq1d 2208 . . . . . . . 8 (𝑡 = ⟨𝑣, 𝑢⟩ → (((𝑧(,)𝑤) ∩ ((,)‘𝑡)) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆))))
6968ralxp 4682 . . . . . . 7 (∀𝑡 ∈ (𝑆 × 𝑆)((𝑧(,)𝑤) ∩ ((,)‘𝑡)) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑣𝑆𝑢𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
7063, 69bitri 183 . . . . . 6 (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑣𝑆𝑢𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
7159, 70syl6bb 195 . . . . 5 (𝑡 = ⟨𝑧, 𝑤⟩ → (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑣𝑆𝑢𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆))))
7271ralxp 4682 . . . 4 (∀𝑡 ∈ (𝑆 × 𝑆)∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑧𝑆𝑤𝑆𝑣𝑆𝑢𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
7353, 72bitri 183 . . 3 (∀𝑥 ∈ ((,) “ (𝑆 × 𝑆))∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑧𝑆𝑤𝑆𝑣𝑆𝑢𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
7446, 73mpbir 145 . 2 𝑥 ∈ ((,) “ (𝑆 × 𝑆))∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥𝑦) ∈ ((,) “ (𝑆 × 𝑆))
75 fiinbas 12216 . 2 ((((,) “ (𝑆 × 𝑆)) ∈ V ∧ ∀𝑥 ∈ ((,) “ (𝑆 × 𝑆))∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥𝑦) ∈ ((,) “ (𝑆 × 𝑆))) → ((,) “ (𝑆 × 𝑆)) ∈ TopBases)
762, 74, 75mp2an 422 1 ((,) “ (𝑆 × 𝑆)) ∈ TopBases
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  wral 2416  Vcvv 2686  cin 3070  wss 3071  𝒫 cpw 3510  {cpr 3528  cop 3530   × cxp 4537  dom cdm 4539  cima 4542  Fun wfun 5117   Fn wfn 5118  wf 5119  cfv 5123  (class class class)co 5774  supcsup 6869  infcinf 6870  cr 7619  *cxr 7799   < clt 7800  (,)cioo 9671  TopBasesctb 12209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-sup 6871  df-inf 6872  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-rp 9442  df-xneg 9559  df-ioo 9675  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-bases 12210
This theorem is referenced by:  qtopbas  12691  retopbas  12692
  Copyright terms: Public domain W3C validator