Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssuni GIF version

Theorem ssuni 3629
 Description: Subclass relationship for class union. (Contributed by NM, 24-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
ssuni ((𝐴𝐵𝐵𝐶) → 𝐴 𝐶)

Proof of Theorem ssuni
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2117 . . . . . . 7 (𝑥 = 𝐵 → (𝑦𝑥𝑦𝐵))
21imbi1d 224 . . . . . 6 (𝑥 = 𝐵 → ((𝑦𝑥𝑦 𝐶) ↔ (𝑦𝐵𝑦 𝐶)))
3 elunii 3612 . . . . . . 7 ((𝑦𝑥𝑥𝐶) → 𝑦 𝐶)
43expcom 113 . . . . . 6 (𝑥𝐶 → (𝑦𝑥𝑦 𝐶))
52, 4vtoclga 2636 . . . . 5 (𝐵𝐶 → (𝑦𝐵𝑦 𝐶))
65imim2d 52 . . . 4 (𝐵𝐶 → ((𝑦𝐴𝑦𝐵) → (𝑦𝐴𝑦 𝐶)))
76alimdv 1775 . . 3 (𝐵𝐶 → (∀𝑦(𝑦𝐴𝑦𝐵) → ∀𝑦(𝑦𝐴𝑦 𝐶)))
8 dfss2 2961 . . 3 (𝐴𝐵 ↔ ∀𝑦(𝑦𝐴𝑦𝐵))
9 dfss2 2961 . . 3 (𝐴 𝐶 ↔ ∀𝑦(𝑦𝐴𝑦 𝐶))
107, 8, 93imtr4g 198 . 2 (𝐵𝐶 → (𝐴𝐵𝐴 𝐶))
1110impcom 120 1 ((𝐴𝐵𝐵𝐶) → 𝐴 𝐶)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 101  ∀wal 1257   = wceq 1259   ∈ wcel 1409   ⊆ wss 2944  ∪ cuni 3607 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038 This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-in 2951  df-ss 2958  df-uni 3608 This theorem is referenced by:  elssuni  3635  uniss2  3638  ssorduni  4240
 Copyright terms: Public domain W3C validator