ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unisuc GIF version

Theorem unisuc 4176
Description: A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
unisuc.1 𝐴 ∈ V
Assertion
Ref Expression
unisuc (Tr 𝐴 suc 𝐴 = 𝐴)

Proof of Theorem unisuc
StepHypRef Expression
1 ssequn1 3143 . 2 ( 𝐴𝐴 ↔ ( 𝐴𝐴) = 𝐴)
2 df-tr 3884 . 2 (Tr 𝐴 𝐴𝐴)
3 df-suc 4134 . . . . 5 suc 𝐴 = (𝐴 ∪ {𝐴})
43unieqi 3619 . . . 4 suc 𝐴 = (𝐴 ∪ {𝐴})
5 uniun 3628 . . . 4 (𝐴 ∪ {𝐴}) = ( 𝐴 {𝐴})
6 unisuc.1 . . . . . 6 𝐴 ∈ V
76unisn 3625 . . . . 5 {𝐴} = 𝐴
87uneq2i 3124 . . . 4 ( 𝐴 {𝐴}) = ( 𝐴𝐴)
94, 5, 83eqtri 2106 . . 3 suc 𝐴 = ( 𝐴𝐴)
109eqeq1i 2089 . 2 ( suc 𝐴 = 𝐴 ↔ ( 𝐴𝐴) = 𝐴)
111, 2, 103bitr4i 210 1 (Tr 𝐴 suc 𝐴 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wb 103   = wceq 1285  wcel 1434  Vcvv 2602  cun 2972  wss 2974  {csn 3406   cuni 3609  Tr wtr 3883  suc csuc 4128
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-rex 2355  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-sn 3412  df-pr 3413  df-uni 3610  df-tr 3884  df-suc 4134
This theorem is referenced by:  onunisuci  4195  ordsucunielexmid  4282  tfrexlem  5983  nnsucuniel  6139
  Copyright terms: Public domain W3C validator