ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unisuc GIF version

Theorem unisuc 4335
Description: A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
unisuc.1 𝐴 ∈ V
Assertion
Ref Expression
unisuc (Tr 𝐴 suc 𝐴 = 𝐴)

Proof of Theorem unisuc
StepHypRef Expression
1 ssequn1 3246 . 2 ( 𝐴𝐴 ↔ ( 𝐴𝐴) = 𝐴)
2 df-tr 4027 . 2 (Tr 𝐴 𝐴𝐴)
3 df-suc 4293 . . . . 5 suc 𝐴 = (𝐴 ∪ {𝐴})
43unieqi 3746 . . . 4 suc 𝐴 = (𝐴 ∪ {𝐴})
5 uniun 3755 . . . 4 (𝐴 ∪ {𝐴}) = ( 𝐴 {𝐴})
6 unisuc.1 . . . . . 6 𝐴 ∈ V
76unisn 3752 . . . . 5 {𝐴} = 𝐴
87uneq2i 3227 . . . 4 ( 𝐴 {𝐴}) = ( 𝐴𝐴)
94, 5, 83eqtri 2164 . . 3 suc 𝐴 = ( 𝐴𝐴)
109eqeq1i 2147 . 2 ( suc 𝐴 = 𝐴 ↔ ( 𝐴𝐴) = 𝐴)
111, 2, 103bitr4i 211 1 (Tr 𝐴 suc 𝐴 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1331  wcel 1480  Vcvv 2686  cun 3069  wss 3071  {csn 3527   cuni 3736  Tr wtr 4026  suc csuc 4287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-sn 3533  df-pr 3534  df-uni 3737  df-tr 4027  df-suc 4293
This theorem is referenced by:  onunisuci  4354  ordsucunielexmid  4446  tfrexlem  6231  nnsucuniel  6391
  Copyright terms: Public domain W3C validator