ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordsucunielexmid GIF version

Theorem ordsucunielexmid 4446
Description: The converse of sucunielr 4426 (where 𝐵 is an ordinal) implies excluded middle. (Contributed by Jim Kingdon, 2-Aug-2019.)
Hypothesis
Ref Expression
ordsucunielexmid.1 𝑥 ∈ On ∀𝑦 ∈ On (𝑥 𝑦 → suc 𝑥𝑦)
Assertion
Ref Expression
ordsucunielexmid (𝜑 ∨ ¬ 𝜑)
Distinct variable group:   𝜑,𝑥,𝑦

Proof of Theorem ordsucunielexmid
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eloni 4297 . . . . . . . 8 (𝑏 ∈ On → Ord 𝑏)
2 ordtr 4300 . . . . . . . 8 (Ord 𝑏 → Tr 𝑏)
31, 2syl 14 . . . . . . 7 (𝑏 ∈ On → Tr 𝑏)
4 vex 2689 . . . . . . . 8 𝑏 ∈ V
54unisuc 4335 . . . . . . 7 (Tr 𝑏 suc 𝑏 = 𝑏)
63, 5sylib 121 . . . . . 6 (𝑏 ∈ On → suc 𝑏 = 𝑏)
76eleq2d 2209 . . . . 5 (𝑏 ∈ On → (𝑎 suc 𝑏𝑎𝑏))
87adantl 275 . . . 4 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 suc 𝑏𝑎𝑏))
9 suceloni 4417 . . . . 5 (𝑏 ∈ On → suc 𝑏 ∈ On)
10 ordsucunielexmid.1 . . . . . 6 𝑥 ∈ On ∀𝑦 ∈ On (𝑥 𝑦 → suc 𝑥𝑦)
11 eleq1 2202 . . . . . . . 8 (𝑥 = 𝑎 → (𝑥 𝑦𝑎 𝑦))
12 suceq 4324 . . . . . . . . 9 (𝑥 = 𝑎 → suc 𝑥 = suc 𝑎)
1312eleq1d 2208 . . . . . . . 8 (𝑥 = 𝑎 → (suc 𝑥𝑦 ↔ suc 𝑎𝑦))
1411, 13imbi12d 233 . . . . . . 7 (𝑥 = 𝑎 → ((𝑥 𝑦 → suc 𝑥𝑦) ↔ (𝑎 𝑦 → suc 𝑎𝑦)))
15 unieq 3745 . . . . . . . . 9 (𝑦 = suc 𝑏 𝑦 = suc 𝑏)
1615eleq2d 2209 . . . . . . . 8 (𝑦 = suc 𝑏 → (𝑎 𝑦𝑎 suc 𝑏))
17 eleq2 2203 . . . . . . . 8 (𝑦 = suc 𝑏 → (suc 𝑎𝑦 ↔ suc 𝑎 ∈ suc 𝑏))
1816, 17imbi12d 233 . . . . . . 7 (𝑦 = suc 𝑏 → ((𝑎 𝑦 → suc 𝑎𝑦) ↔ (𝑎 suc 𝑏 → suc 𝑎 ∈ suc 𝑏)))
1914, 18rspc2va 2803 . . . . . 6 (((𝑎 ∈ On ∧ suc 𝑏 ∈ On) ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 𝑦 → suc 𝑥𝑦)) → (𝑎 suc 𝑏 → suc 𝑎 ∈ suc 𝑏))
2010, 19mpan2 421 . . . . 5 ((𝑎 ∈ On ∧ suc 𝑏 ∈ On) → (𝑎 suc 𝑏 → suc 𝑎 ∈ suc 𝑏))
219, 20sylan2 284 . . . 4 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 suc 𝑏 → suc 𝑎 ∈ suc 𝑏))
228, 21sylbird 169 . . 3 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎𝑏 → suc 𝑎 ∈ suc 𝑏))
2322rgen2a 2486 . 2 𝑎 ∈ On ∀𝑏 ∈ On (𝑎𝑏 → suc 𝑎 ∈ suc 𝑏)
2423onsucelsucexmid 4445 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 697   = wceq 1331  wcel 1480  wral 2416   cuni 3736  Tr wtr 4026  Ord word 4284  Oncon0 4285  suc csuc 4287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-uni 3737  df-tr 4027  df-iord 4288  df-on 4290  df-suc 4293
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator