ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtocld GIF version

Theorem vtocld 2623
Description: Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
vtocld.1 (𝜑𝐴𝑉)
vtocld.2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
vtocld.3 (𝜑𝜓)
Assertion
Ref Expression
vtocld (𝜑𝜒)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem vtocld
StepHypRef Expression
1 vtocld.1 . 2 (𝜑𝐴𝑉)
2 vtocld.2 . 2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
3 vtocld.3 . 2 (𝜑𝜓)
4 nfv 1437 . 2 𝑥𝜑
5 nfcvd 2195 . 2 (𝜑𝑥𝐴)
6 nfvd 1438 . 2 (𝜑 → Ⅎ𝑥𝜒)
71, 2, 3, 4, 5, 6vtocldf 2622 1 (𝜑𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102   = wceq 1259  wcel 1409
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-3an 898  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576
This theorem is referenced by:  funfvima3  5420  frec2uzzd  9350  frec2uzuzd  9352
  Copyright terms: Public domain W3C validator