Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpindi GIF version

Theorem xpindi 4519
 Description: Distributive law for cross product over intersection. Theorem 102 of [Suppes] p. 52. (Contributed by NM, 26-Sep-2004.)
Assertion
Ref Expression
xpindi (𝐴 × (𝐵𝐶)) = ((𝐴 × 𝐵) ∩ (𝐴 × 𝐶))

Proof of Theorem xpindi
StepHypRef Expression
1 inxp 4518 . 2 ((𝐴 × 𝐵) ∩ (𝐴 × 𝐶)) = ((𝐴𝐴) × (𝐵𝐶))
2 inidm 3191 . . 3 (𝐴𝐴) = 𝐴
32xpeq1i 4411 . 2 ((𝐴𝐴) × (𝐵𝐶)) = (𝐴 × (𝐵𝐶))
41, 3eqtr2i 2104 1 (𝐴 × (𝐵𝐶)) = ((𝐴 × 𝐵) ∩ (𝐴 × 𝐶))
 Colors of variables: wff set class Syntax hints:   = wceq 1285   ∩ cin 2981   × cxp 4389 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992 This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2612  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-opab 3860  df-xp 4397  df-rel 4398 This theorem is referenced by:  xpriindim  4522
 Copyright terms: Public domain W3C validator