![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.9ht | Structured version Visualization version GIF version |
Description: A closed version of 19.9 2110. (Contributed by NM, 13-May-1993.) (Proof shortened by Wolf Lammen, 3-Mar-2018.) |
Ref | Expression |
---|---|
19.9ht | ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (∃𝑥𝜑 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exim 1801 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (∃𝑥𝜑 → ∃𝑥∀𝑥𝜑)) | |
2 | axc7e 2171 | . 2 ⊢ (∃𝑥∀𝑥𝜑 → 𝜑) | |
3 | 1, 2 | syl6 35 | 1 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (∃𝑥𝜑 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1521 ∃wex 1744 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-10 2059 ax-12 2087 |
This theorem depends on definitions: df-bi 197 df-ex 1745 |
This theorem is referenced by: hbntOLD 2183 19.9dOLD 2239 bj-19.9htbi 32819 |
Copyright terms: Public domain | W3C validator |