Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aecoms-o Structured version   Visualization version   GIF version

Theorem aecoms-o 34689
Description: A commutation rule for identical variable specifiers. Version of aecoms 2452 using ax-c11 34674. (Contributed by NM, 10-May-1993.) (New usage is discouraged.)
Hypothesis
Ref Expression
alequcoms-o.1 (∀𝑥 𝑥 = 𝑦𝜑)
Assertion
Ref Expression
aecoms-o (∀𝑦 𝑦 = 𝑥𝜑)

Proof of Theorem aecoms-o
StepHypRef Expression
1 aecom-o 34688 . 2 (∀𝑦 𝑦 = 𝑥 → ∀𝑥 𝑥 = 𝑦)
2 alequcoms-o.1 . 2 (∀𝑥 𝑥 = 𝑦𝜑)
31, 2syl 17 1 (∀𝑦 𝑦 = 𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-c5 34670  ax-c4 34671  ax-c7 34672  ax-c10 34673  ax-c11 34674  ax-c9 34677
This theorem depends on definitions:  df-bi 197  df-an 385  df-ex 1852
This theorem is referenced by:  hbae-o  34690  dral1-o  34691  dvelimf-o  34716  aev-o  34718  ax12indalem  34732  ax12inda2ALT  34733
  Copyright terms: Public domain W3C validator