Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvelimf-o Structured version   Visualization version   GIF version

Theorem dvelimf-o 34718
 Description: Proof of dvelimh 2476 that uses ax-c11 34676 but not ax-c15 34678, ax-c11n 34677, or ax-12 2196. Version of dvelimh 2476 using ax-c11 34676 instead of axc11 2456. (Contributed by NM, 12-Nov-2002.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
dvelimf-o.1 (𝜑 → ∀𝑥𝜑)
dvelimf-o.2 (𝜓 → ∀𝑧𝜓)
dvelimf-o.3 (𝑧 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
dvelimf-o (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓))

Proof of Theorem dvelimf-o
StepHypRef Expression
1 hba1-o 34686 . . . . 5 (∀𝑧(𝑧 = 𝑦𝜑) → ∀𝑧𝑧(𝑧 = 𝑦𝜑))
2 ax-c11 34676 . . . . . 6 (∀𝑧 𝑧 = 𝑥 → (∀𝑧𝑧(𝑧 = 𝑦𝜑) → ∀𝑥𝑧(𝑧 = 𝑦𝜑)))
32aecoms-o 34691 . . . . 5 (∀𝑥 𝑥 = 𝑧 → (∀𝑧𝑧(𝑧 = 𝑦𝜑) → ∀𝑥𝑧(𝑧 = 𝑦𝜑)))
41, 3syl5 34 . . . 4 (∀𝑥 𝑥 = 𝑧 → (∀𝑧(𝑧 = 𝑦𝜑) → ∀𝑥𝑧(𝑧 = 𝑦𝜑)))
54a1d 25 . . 3 (∀𝑥 𝑥 = 𝑧 → (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑧(𝑧 = 𝑦𝜑) → ∀𝑥𝑧(𝑧 = 𝑦𝜑))))
6 hbnae-o 34717 . . . . . 6 (¬ ∀𝑥 𝑥 = 𝑧 → ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑧)
7 hbnae-o 34717 . . . . . 6 (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦)
86, 7hban 2275 . . . . 5 ((¬ ∀𝑥 𝑥 = 𝑧 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → ∀𝑧(¬ ∀𝑥 𝑥 = 𝑧 ∧ ¬ ∀𝑥 𝑥 = 𝑦))
9 hbnae-o 34717 . . . . . . 7 (¬ ∀𝑥 𝑥 = 𝑧 → ∀𝑥 ¬ ∀𝑥 𝑥 = 𝑧)
10 hbnae-o 34717 . . . . . . 7 (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑥 ¬ ∀𝑥 𝑥 = 𝑦)
119, 10hban 2275 . . . . . 6 ((¬ ∀𝑥 𝑥 = 𝑧 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → ∀𝑥(¬ ∀𝑥 𝑥 = 𝑧 ∧ ¬ ∀𝑥 𝑥 = 𝑦))
12 ax-c9 34679 . . . . . . 7 (¬ ∀𝑥 𝑥 = 𝑧 → (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)))
1312imp 444 . . . . . 6 ((¬ ∀𝑥 𝑥 = 𝑧 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
14 dvelimf-o.1 . . . . . . 7 (𝜑 → ∀𝑥𝜑)
1514a1i 11 . . . . . 6 ((¬ ∀𝑥 𝑥 = 𝑧 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → (𝜑 → ∀𝑥𝜑))
1611, 13, 15hbimd 2273 . . . . 5 ((¬ ∀𝑥 𝑥 = 𝑧 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → ((𝑧 = 𝑦𝜑) → ∀𝑥(𝑧 = 𝑦𝜑)))
178, 16hbald 2190 . . . 4 ((¬ ∀𝑥 𝑥 = 𝑧 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → (∀𝑧(𝑧 = 𝑦𝜑) → ∀𝑥𝑧(𝑧 = 𝑦𝜑)))
1817ex 449 . . 3 (¬ ∀𝑥 𝑥 = 𝑧 → (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑧(𝑧 = 𝑦𝜑) → ∀𝑥𝑧(𝑧 = 𝑦𝜑))))
195, 18pm2.61i 176 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑧(𝑧 = 𝑦𝜑) → ∀𝑥𝑧(𝑧 = 𝑦𝜑)))
20 dvelimf-o.2 . . 3 (𝜓 → ∀𝑧𝜓)
21 dvelimf-o.3 . . 3 (𝑧 = 𝑦 → (𝜑𝜓))
2220, 21equsalh 2439 . 2 (∀𝑧(𝑧 = 𝑦𝜑) ↔ 𝜓)
2322albii 1896 . 2 (∀𝑥𝑧(𝑧 = 𝑦𝜑) ↔ ∀𝑥𝜓)
2419, 22, 233imtr3g 284 1 (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383  ∀wal 1630 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-c5 34672  ax-c4 34673  ax-c7 34674  ax-c10 34675  ax-c11 34676  ax-c9 34679 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1635  df-ex 1854  df-nf 1859 This theorem is referenced by:  dveeq2-o  34722  dveeq1-o  34724  ax12el  34731
 Copyright terms: Public domain W3C validator