MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax12wdemo Structured version   Visualization version   GIF version

Theorem ax12wdemo 2139
Description: Example of an application of ax12w 2137 that results in an instance of ax-12 2177 for a contrived formula with mixed free and bound variables, (𝑥𝑦 ∧ ∀𝑥𝑧𝑥 ∧ ∀𝑦𝑧𝑦𝑥), in place of 𝜑. The proof illustrates bound variable renaming with cbvalvw 2043 to obtain fresh variables to avoid distinct variable clashes. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 14-Apr-2017.)
Assertion
Ref Expression
ax12wdemo (𝑥 = 𝑦 → (∀𝑦(𝑥𝑦 ∧ ∀𝑥 𝑧𝑥 ∧ ∀𝑦𝑧 𝑦𝑥) → ∀𝑥(𝑥 = 𝑦 → (𝑥𝑦 ∧ ∀𝑥 𝑧𝑥 ∧ ∀𝑦𝑧 𝑦𝑥))))
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem ax12wdemo
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elequ1 2121 . . 3 (𝑥 = 𝑦 → (𝑥𝑦𝑦𝑦))
2 elequ2 2129 . . . . 5 (𝑥 = 𝑤 → (𝑧𝑥𝑧𝑤))
32cbvalvw 2043 . . . 4 (∀𝑥 𝑧𝑥 ↔ ∀𝑤 𝑧𝑤)
43a1i 11 . . 3 (𝑥 = 𝑦 → (∀𝑥 𝑧𝑥 ↔ ∀𝑤 𝑧𝑤))
5 elequ1 2121 . . . . . 6 (𝑦 = 𝑣 → (𝑦𝑥𝑣𝑥))
65albidv 1921 . . . . 5 (𝑦 = 𝑣 → (∀𝑧 𝑦𝑥 ↔ ∀𝑧 𝑣𝑥))
76cbvalvw 2043 . . . 4 (∀𝑦𝑧 𝑦𝑥 ↔ ∀𝑣𝑧 𝑣𝑥)
8 elequ2 2129 . . . . . 6 (𝑥 = 𝑦 → (𝑣𝑥𝑣𝑦))
98albidv 1921 . . . . 5 (𝑥 = 𝑦 → (∀𝑧 𝑣𝑥 ↔ ∀𝑧 𝑣𝑦))
109albidv 1921 . . . 4 (𝑥 = 𝑦 → (∀𝑣𝑧 𝑣𝑥 ↔ ∀𝑣𝑧 𝑣𝑦))
117, 10syl5bb 285 . . 3 (𝑥 = 𝑦 → (∀𝑦𝑧 𝑦𝑥 ↔ ∀𝑣𝑧 𝑣𝑦))
121, 4, 113anbi123d 1432 . 2 (𝑥 = 𝑦 → ((𝑥𝑦 ∧ ∀𝑥 𝑧𝑥 ∧ ∀𝑦𝑧 𝑦𝑥) ↔ (𝑦𝑦 ∧ ∀𝑤 𝑧𝑤 ∧ ∀𝑣𝑧 𝑣𝑦)))
13 elequ2 2129 . . 3 (𝑦 = 𝑣 → (𝑥𝑦𝑥𝑣))
147a1i 11 . . 3 (𝑦 = 𝑣 → (∀𝑦𝑧 𝑦𝑥 ↔ ∀𝑣𝑧 𝑣𝑥))
1513, 143anbi13d 1434 . 2 (𝑦 = 𝑣 → ((𝑥𝑦 ∧ ∀𝑥 𝑧𝑥 ∧ ∀𝑦𝑧 𝑦𝑥) ↔ (𝑥𝑣 ∧ ∀𝑥 𝑧𝑥 ∧ ∀𝑣𝑧 𝑣𝑥)))
1612, 15ax12w 2137 1 (𝑥 = 𝑦 → (∀𝑦(𝑥𝑦 ∧ ∀𝑥 𝑧𝑥 ∧ ∀𝑦𝑧 𝑦𝑥) → ∀𝑥(𝑥 = 𝑦 → (𝑥𝑦 ∧ ∀𝑥 𝑧𝑥 ∧ ∀𝑦𝑧 𝑦𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  w3a 1083  wal 1535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124
This theorem depends on definitions:  df-bi 209  df-an 399  df-3an 1085  df-ex 1781
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator