 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax13ALT Structured version   Visualization version   GIF version

Theorem ax13ALT 2341
 Description: Alternate proof of ax13 2285 from FOL, sp 2091, and axc9 2338. (Contributed by NM, 21-Dec-2015.) (Proof shortened by Wolf Lammen, 31-Jan-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ax13ALT 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧))

Proof of Theorem ax13ALT
StepHypRef Expression
1 sp 2091 . . . 4 (∀𝑥 𝑥 = 𝑦𝑥 = 𝑦)
21con3i 150 . . 3 𝑥 = 𝑦 → ¬ ∀𝑥 𝑥 = 𝑦)
3 sp 2091 . . . 4 (∀𝑥 𝑥 = 𝑧𝑥 = 𝑧)
43con3i 150 . . 3 𝑥 = 𝑧 → ¬ ∀𝑥 𝑥 = 𝑧)
5 axc9 2338 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑥 𝑥 = 𝑧 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)))
62, 4, 5syl2im 40 . 2 𝑥 = 𝑦 → (¬ 𝑥 = 𝑧 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)))
7 ax13b 2006 . 2 ((¬ 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) ↔ (¬ 𝑥 = 𝑦 → (¬ 𝑥 = 𝑧 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧))))
86, 7mpbir 221 1 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4  ∀wal 1521 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-10 2059  ax-12 2087  ax-13 2282 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator