Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nnfand Structured version   Visualization version   GIF version

Theorem bj-nnfand 34099
Description: Nonfreeness in both conjuncts implies nonfreeness in the conjunction, deduction form. Note: compared with the proof of bj-nnfan 34098, it has two more essential steps but fewer total steps (since there are fewer intermediate formulas to build) and is easier to follow and understand. This statement is of intermediate complexity: for simpler statements, closed-style proofs like that of bj-nnfan 34098 will generally be shorter than deduction-style proofs while still easy to follow, while for more complex statements, the opposite will be true (and deduction-style proofs like that of bj-nnfand 34099 will generally be easier to understand). (Contributed by BJ, 19-Nov-2023.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-nnfand.1 (𝜑 → Ⅎ'𝑥𝜓)
bj-nnfand.2 (𝜑 → Ⅎ'𝑥𝜒)
Assertion
Ref Expression
bj-nnfand (𝜑 → Ⅎ'𝑥(𝜓𝜒))

Proof of Theorem bj-nnfand
StepHypRef Expression
1 19.40 1886 . . 3 (∃𝑥(𝜓𝜒) → (∃𝑥𝜓 ∧ ∃𝑥𝜒))
2 bj-nnfand.1 . . . . 5 (𝜑 → Ⅎ'𝑥𝜓)
32bj-nnfed 34084 . . . 4 (𝜑 → (∃𝑥𝜓𝜓))
4 bj-nnfand.2 . . . . 5 (𝜑 → Ⅎ'𝑥𝜒)
54bj-nnfed 34084 . . . 4 (𝜑 → (∃𝑥𝜒𝜒))
63, 5anim12d 610 . . 3 (𝜑 → ((∃𝑥𝜓 ∧ ∃𝑥𝜒) → (𝜓𝜒)))
71, 6syl5 34 . 2 (𝜑 → (∃𝑥(𝜓𝜒) → (𝜓𝜒)))
82bj-nnfad 34082 . . . 4 (𝜑 → (𝜓 → ∀𝑥𝜓))
94bj-nnfad 34082 . . . 4 (𝜑 → (𝜒 → ∀𝑥𝜒))
108, 9anim12d 610 . . 3 (𝜑 → ((𝜓𝜒) → (∀𝑥𝜓 ∧ ∀𝑥𝜒)))
11 19.26 1870 . . 3 (∀𝑥(𝜓𝜒) ↔ (∀𝑥𝜓 ∧ ∀𝑥𝜒))
1210, 11syl6ibr 254 . 2 (𝜑 → ((𝜓𝜒) → ∀𝑥(𝜓𝜒)))
13 df-bj-nnf 34077 . 2 (Ⅎ'𝑥(𝜓𝜒) ↔ ((∃𝑥(𝜓𝜒) → (𝜓𝜒)) ∧ ((𝜓𝜒) → ∀𝑥(𝜓𝜒))))
147, 12, 13sylanbrc 585 1 (𝜑 → Ⅎ'𝑥(𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wal 1534  wex 1779  Ⅎ'wnnf 34076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 209  df-an 399  df-ex 1780  df-bj-nnf 34077
This theorem is referenced by:  bj-nnfbid  34103
  Copyright terms: Public domain W3C validator