Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj207 Structured version   Visualization version   GIF version

Theorem bnj207 31279
Description: Technical lemma for bnj852 31319. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj207.1 (𝜒 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
bnj207.2 (𝜑′[𝑀 / 𝑛]𝜑)
bnj207.3 (𝜓′[𝑀 / 𝑛]𝜓)
bnj207.4 (𝜒′[𝑀 / 𝑛]𝜒)
bnj207.5 𝑀 ∈ V
Assertion
Ref Expression
bnj207 (𝜒′ ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑀𝜑′𝜓′)))
Distinct variable groups:   𝐴,𝑛   𝑓,𝑀   𝑅,𝑛   𝑓,𝑛   𝑥,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑓,𝑛)   𝜓(𝑥,𝑓,𝑛)   𝜒(𝑥,𝑓,𝑛)   𝐴(𝑥,𝑓)   𝑅(𝑥,𝑓)   𝑀(𝑥,𝑛)   𝜑′(𝑥,𝑓,𝑛)   𝜓′(𝑥,𝑓,𝑛)   𝜒′(𝑥,𝑓,𝑛)

Proof of Theorem bnj207
StepHypRef Expression
1 bnj207.4 . 2 (𝜒′[𝑀 / 𝑛]𝜒)
2 bnj207.1 . . . 4 (𝜒 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
32sbcbii 3632 . . 3 ([𝑀 / 𝑛]𝜒[𝑀 / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
4 bnj207.5 . . . . 5 𝑀 ∈ V
5 nfv 1992 . . . . . 6 𝑛(𝑅 FrSe 𝐴𝑥𝐴)
65sbc19.21g 3643 . . . . 5 (𝑀 ∈ V → ([𝑀 / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → [𝑀 / 𝑛]∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))))
74, 6ax-mp 5 . . . 4 ([𝑀 / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → [𝑀 / 𝑛]∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
84bnj89 31117 . . . . . 6 ([𝑀 / 𝑛]∃!𝑓(𝑓 Fn 𝑛𝜑𝜓) ↔ ∃!𝑓[𝑀 / 𝑛](𝑓 Fn 𝑛𝜑𝜓))
94bnj90 31118 . . . . . . . . 9 ([𝑀 / 𝑛]𝑓 Fn 𝑛𝑓 Fn 𝑀)
109bicomi 214 . . . . . . . 8 (𝑓 Fn 𝑀[𝑀 / 𝑛]𝑓 Fn 𝑛)
11 bnj207.2 . . . . . . . 8 (𝜑′[𝑀 / 𝑛]𝜑)
12 bnj207.3 . . . . . . . 8 (𝜓′[𝑀 / 𝑛]𝜓)
1310, 11, 12, 4bnj206 31127 . . . . . . 7 ([𝑀 / 𝑛](𝑓 Fn 𝑛𝜑𝜓) ↔ (𝑓 Fn 𝑀𝜑′𝜓′))
1413eubii 2629 . . . . . 6 (∃!𝑓[𝑀 / 𝑛](𝑓 Fn 𝑛𝜑𝜓) ↔ ∃!𝑓(𝑓 Fn 𝑀𝜑′𝜓′))
158, 14bitri 264 . . . . 5 ([𝑀 / 𝑛]∃!𝑓(𝑓 Fn 𝑛𝜑𝜓) ↔ ∃!𝑓(𝑓 Fn 𝑀𝜑′𝜓′))
1615imbi2i 325 . . . 4 (((𝑅 FrSe 𝐴𝑥𝐴) → [𝑀 / 𝑛]∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑀𝜑′𝜓′)))
177, 16bitri 264 . . 3 ([𝑀 / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑀𝜑′𝜓′)))
183, 17bitri 264 . 2 ([𝑀 / 𝑛]𝜒 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑀𝜑′𝜓′)))
191, 18bitri 264 1 (𝜒′ ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑀𝜑′𝜓′)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072  wcel 2139  ∃!weu 2607  Vcvv 3340  [wsbc 3576   Fn wfn 6044   FrSe w-bnj15 31088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-clab 2747  df-cleq 2753  df-clel 2756  df-v 3342  df-sbc 3577  df-fn 6052
This theorem is referenced by:  bnj600  31317  bnj908  31329
  Copyright terms: Public domain W3C validator