![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvrabv2 | Structured version Visualization version GIF version |
Description: A more general version of cbvrabv 3230. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
cbvrabv2.1 | ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) |
cbvrabv2.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvrabv2 | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐵 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2793 | . 2 ⊢ Ⅎ𝑦𝐴 | |
2 | nfcv 2793 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | nfv 1883 | . 2 ⊢ Ⅎ𝑦𝜑 | |
4 | nfv 1883 | . 2 ⊢ Ⅎ𝑥𝜓 | |
5 | cbvrabv2.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) | |
6 | cbvrabv2.2 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
7 | 1, 2, 3, 4, 5, 6 | cbvrabcsf 3601 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐵 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1523 {crab 2945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rab 2950 df-sbc 3469 df-csb 3567 |
This theorem is referenced by: smfsuplem2 41339 |
Copyright terms: Public domain | W3C validator |