Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsalt Structured version   Visualization version   GIF version

Theorem ceqsalt 3214
 Description: Closed theorem version of ceqsalg 3216. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 10-Oct-2016.)
Assertion
Ref Expression
ceqsalt ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem ceqsalt
StepHypRef Expression
1 elisset 3201 . . . 4 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
213ad2ant3 1082 . . 3 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → ∃𝑥 𝑥 = 𝐴)
3 biimp 205 . . . . . . 7 ((𝜑𝜓) → (𝜑𝜓))
43imim3i 64 . . . . . 6 ((𝑥 = 𝐴 → (𝜑𝜓)) → ((𝑥 = 𝐴𝜑) → (𝑥 = 𝐴𝜓)))
54al2imi 1740 . . . . 5 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (∀𝑥(𝑥 = 𝐴𝜑) → ∀𝑥(𝑥 = 𝐴𝜓)))
653ad2ant2 1081 . . . 4 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (∀𝑥(𝑥 = 𝐴𝜑) → ∀𝑥(𝑥 = 𝐴𝜓)))
7 19.23t 2077 . . . . 5 (Ⅎ𝑥𝜓 → (∀𝑥(𝑥 = 𝐴𝜓) ↔ (∃𝑥 𝑥 = 𝐴𝜓)))
873ad2ant1 1080 . . . 4 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (∀𝑥(𝑥 = 𝐴𝜓) ↔ (∃𝑥 𝑥 = 𝐴𝜓)))
96, 8sylibd 229 . . 3 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (∀𝑥(𝑥 = 𝐴𝜑) → (∃𝑥 𝑥 = 𝐴𝜓)))
102, 9mpid 44 . 2 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (∀𝑥(𝑥 = 𝐴𝜑) → 𝜓))
11 biimpr 210 . . . . . . 7 ((𝜑𝜓) → (𝜓𝜑))
1211imim2i 16 . . . . . 6 ((𝑥 = 𝐴 → (𝜑𝜓)) → (𝑥 = 𝐴 → (𝜓𝜑)))
1312com23 86 . . . . 5 ((𝑥 = 𝐴 → (𝜑𝜓)) → (𝜓 → (𝑥 = 𝐴𝜑)))
1413alimi 1736 . . . 4 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → ∀𝑥(𝜓 → (𝑥 = 𝐴𝜑)))
15143ad2ant2 1081 . . 3 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → ∀𝑥(𝜓 → (𝑥 = 𝐴𝜑)))
16 19.21t 2071 . . . 4 (Ⅎ𝑥𝜓 → (∀𝑥(𝜓 → (𝑥 = 𝐴𝜑)) ↔ (𝜓 → ∀𝑥(𝑥 = 𝐴𝜑))))
17163ad2ant1 1080 . . 3 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (∀𝑥(𝜓 → (𝑥 = 𝐴𝜑)) ↔ (𝜓 → ∀𝑥(𝑥 = 𝐴𝜑))))
1815, 17mpbid 222 . 2 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (𝜓 → ∀𝑥(𝑥 = 𝐴𝜑)))
1910, 18impbid 202 1 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ w3a 1036  ∀wal 1478   = wceq 1480  ∃wex 1701  Ⅎwnf 1705   ∈ wcel 1987 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-12 2044  ax-ext 2601 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-v 3188 This theorem is referenced by:  ceqsralt  3215  ceqsalg  3216
 Copyright terms: Public domain W3C validator