MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbnestgfw Structured version   Visualization version   GIF version

Theorem csbnestgfw 4371
Description: Nest the composition of two substitutions. Version of csbnestgf 4376 with a disjoint variable condition, which does not require ax-13 2390. (Contributed by NM, 23-Nov-2005.) (Revised by Gino Giotto, 26-Jan-2024.)
Assertion
Ref Expression
csbnestgfw ((𝐴𝑉 ∧ ∀𝑦𝑥𝐶) → 𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐴 / 𝑥𝐵 / 𝑦𝐶)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem csbnestgfw
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elex 3512 . . 3 (𝐴𝑉𝐴 ∈ V)
2 df-csb 3884 . . . . . . 7 𝐵 / 𝑦𝐶 = {𝑧[𝐵 / 𝑦]𝑧𝐶}
32abeq2i 2948 . . . . . 6 (𝑧𝐵 / 𝑦𝐶[𝐵 / 𝑦]𝑧𝐶)
43sbcbii 3829 . . . . 5 ([𝐴 / 𝑥]𝑧𝐵 / 𝑦𝐶[𝐴 / 𝑥][𝐵 / 𝑦]𝑧𝐶)
5 nfcr 2966 . . . . . . 7 (𝑥𝐶 → Ⅎ𝑥 𝑧𝐶)
65alimi 1812 . . . . . 6 (∀𝑦𝑥𝐶 → ∀𝑦𝑥 𝑧𝐶)
7 sbcnestgfw 4370 . . . . . 6 ((𝐴 ∈ V ∧ ∀𝑦𝑥 𝑧𝐶) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝑧𝐶[𝐴 / 𝑥𝐵 / 𝑦]𝑧𝐶))
86, 7sylan2 594 . . . . 5 ((𝐴 ∈ V ∧ ∀𝑦𝑥𝐶) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝑧𝐶[𝐴 / 𝑥𝐵 / 𝑦]𝑧𝐶))
94, 8syl5bb 285 . . . 4 ((𝐴 ∈ V ∧ ∀𝑦𝑥𝐶) → ([𝐴 / 𝑥]𝑧𝐵 / 𝑦𝐶[𝐴 / 𝑥𝐵 / 𝑦]𝑧𝐶))
109abbidv 2885 . . 3 ((𝐴 ∈ V ∧ ∀𝑦𝑥𝐶) → {𝑧[𝐴 / 𝑥]𝑧𝐵 / 𝑦𝐶} = {𝑧[𝐴 / 𝑥𝐵 / 𝑦]𝑧𝐶})
111, 10sylan 582 . 2 ((𝐴𝑉 ∧ ∀𝑦𝑥𝐶) → {𝑧[𝐴 / 𝑥]𝑧𝐵 / 𝑦𝐶} = {𝑧[𝐴 / 𝑥𝐵 / 𝑦]𝑧𝐶})
12 df-csb 3884 . 2 𝐴 / 𝑥𝐵 / 𝑦𝐶 = {𝑧[𝐴 / 𝑥]𝑧𝐵 / 𝑦𝐶}
13 df-csb 3884 . 2 𝐴 / 𝑥𝐵 / 𝑦𝐶 = {𝑧[𝐴 / 𝑥𝐵 / 𝑦]𝑧𝐶}
1411, 12, 133eqtr4g 2881 1 ((𝐴𝑉 ∧ ∀𝑦𝑥𝐶) → 𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐴 / 𝑥𝐵 / 𝑦𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wal 1535   = wceq 1537  wnf 1784  wcel 2114  {cab 2799  wnfc 2961  Vcvv 3494  [wsbc 3772  csb 3883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-v 3496  df-sbc 3773  df-csb 3884
This theorem is referenced by:  csbnestgw  4373  csbnest1g  4381
  Copyright terms: Public domain W3C validator