Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-cvlat Structured version   Visualization version   GIF version

Definition df-cvlat 35110
Description: Define the class of atomic lattices with the covering property. (This is actually the exchange property, but they are equivalent. The literature usually uses the covering property terminology.) (Contributed by NM, 5-Nov-2012.)
Assertion
Ref Expression
df-cvlat CvLat = {𝑘 ∈ AtLat ∣ ∀𝑎 ∈ (Atoms‘𝑘)∀𝑏 ∈ (Atoms‘𝑘)∀𝑐 ∈ (Base‘𝑘)((¬ 𝑎(le‘𝑘)𝑐𝑎(le‘𝑘)(𝑐(join‘𝑘)𝑏)) → 𝑏(le‘𝑘)(𝑐(join‘𝑘)𝑎))}
Distinct variable group:   𝑘,𝑐,𝑎,𝑏

Detailed syntax breakdown of Definition df-cvlat
StepHypRef Expression
1 clc 35053 . 2 class CvLat
2 va . . . . . . . . . . 11 setvar 𝑎
32cv 1629 . . . . . . . . . 10 class 𝑎
4 vc . . . . . . . . . . 11 setvar 𝑐
54cv 1629 . . . . . . . . . 10 class 𝑐
6 vk . . . . . . . . . . . 12 setvar 𝑘
76cv 1629 . . . . . . . . . . 11 class 𝑘
8 cple 16148 . . . . . . . . . . 11 class le
97, 8cfv 6047 . . . . . . . . . 10 class (le‘𝑘)
103, 5, 9wbr 4802 . . . . . . . . 9 wff 𝑎(le‘𝑘)𝑐
1110wn 3 . . . . . . . 8 wff ¬ 𝑎(le‘𝑘)𝑐
12 vb . . . . . . . . . . 11 setvar 𝑏
1312cv 1629 . . . . . . . . . 10 class 𝑏
14 cjn 17143 . . . . . . . . . . 11 class join
157, 14cfv 6047 . . . . . . . . . 10 class (join‘𝑘)
165, 13, 15co 6811 . . . . . . . . 9 class (𝑐(join‘𝑘)𝑏)
173, 16, 9wbr 4802 . . . . . . . 8 wff 𝑎(le‘𝑘)(𝑐(join‘𝑘)𝑏)
1811, 17wa 383 . . . . . . 7 wff 𝑎(le‘𝑘)𝑐𝑎(le‘𝑘)(𝑐(join‘𝑘)𝑏))
195, 3, 15co 6811 . . . . . . . 8 class (𝑐(join‘𝑘)𝑎)
2013, 19, 9wbr 4802 . . . . . . 7 wff 𝑏(le‘𝑘)(𝑐(join‘𝑘)𝑎)
2118, 20wi 4 . . . . . 6 wff ((¬ 𝑎(le‘𝑘)𝑐𝑎(le‘𝑘)(𝑐(join‘𝑘)𝑏)) → 𝑏(le‘𝑘)(𝑐(join‘𝑘)𝑎))
22 cbs 16057 . . . . . . 7 class Base
237, 22cfv 6047 . . . . . 6 class (Base‘𝑘)
2421, 4, 23wral 3048 . . . . 5 wff 𝑐 ∈ (Base‘𝑘)((¬ 𝑎(le‘𝑘)𝑐𝑎(le‘𝑘)(𝑐(join‘𝑘)𝑏)) → 𝑏(le‘𝑘)(𝑐(join‘𝑘)𝑎))
25 catm 35051 . . . . . 6 class Atoms
267, 25cfv 6047 . . . . 5 class (Atoms‘𝑘)
2724, 12, 26wral 3048 . . . 4 wff 𝑏 ∈ (Atoms‘𝑘)∀𝑐 ∈ (Base‘𝑘)((¬ 𝑎(le‘𝑘)𝑐𝑎(le‘𝑘)(𝑐(join‘𝑘)𝑏)) → 𝑏(le‘𝑘)(𝑐(join‘𝑘)𝑎))
2827, 2, 26wral 3048 . . 3 wff 𝑎 ∈ (Atoms‘𝑘)∀𝑏 ∈ (Atoms‘𝑘)∀𝑐 ∈ (Base‘𝑘)((¬ 𝑎(le‘𝑘)𝑐𝑎(le‘𝑘)(𝑐(join‘𝑘)𝑏)) → 𝑏(le‘𝑘)(𝑐(join‘𝑘)𝑎))
29 cal 35052 . . 3 class AtLat
3028, 6, 29crab 3052 . 2 class {𝑘 ∈ AtLat ∣ ∀𝑎 ∈ (Atoms‘𝑘)∀𝑏 ∈ (Atoms‘𝑘)∀𝑐 ∈ (Base‘𝑘)((¬ 𝑎(le‘𝑘)𝑐𝑎(le‘𝑘)(𝑐(join‘𝑘)𝑏)) → 𝑏(le‘𝑘)(𝑐(join‘𝑘)𝑎))}
311, 30wceq 1630 1 wff CvLat = {𝑘 ∈ AtLat ∣ ∀𝑎 ∈ (Atoms‘𝑘)∀𝑏 ∈ (Atoms‘𝑘)∀𝑐 ∈ (Base‘𝑘)((¬ 𝑎(le‘𝑘)𝑐𝑎(le‘𝑘)(𝑐(join‘𝑘)𝑏)) → 𝑏(le‘𝑘)(𝑐(join‘𝑘)𝑎))}
Colors of variables: wff setvar class
This definition is referenced by:  iscvlat  35111
  Copyright terms: Public domain W3C validator