MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-im Structured version   Visualization version   GIF version

Definition df-im 13835
Description: Define a function whose value is the imaginary part of a complex number. See imval 13841 for its value, imcli 13902 for its closure, and replim 13850 for its use in decomposing a complex number. (Contributed by NM, 9-May-1999.)
Assertion
Ref Expression
df-im ℑ = (𝑥 ∈ ℂ ↦ (ℜ‘(𝑥 / i)))

Detailed syntax breakdown of Definition df-im
StepHypRef Expression
1 cim 13832 . 2 class
2 vx . . 3 setvar 𝑥
3 cc 9931 . . 3 class
42cv 1481 . . . . 5 class 𝑥
5 ci 9935 . . . . 5 class i
6 cdiv 10681 . . . . 5 class /
74, 5, 6co 6647 . . . 4 class (𝑥 / i)
8 cre 13831 . . . 4 class
97, 8cfv 5886 . . 3 class (ℜ‘(𝑥 / i))
102, 3, 9cmpt 4727 . 2 class (𝑥 ∈ ℂ ↦ (ℜ‘(𝑥 / i)))
111, 10wceq 1482 1 wff ℑ = (𝑥 ∈ ℂ ↦ (ℜ‘(𝑥 / i)))
Colors of variables: wff setvar class
This definition is referenced by:  imval  13841  imf  13847  cnre2csqima  29942
  Copyright terms: Public domain W3C validator