MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ltxr Structured version   Visualization version   GIF version

Definition df-ltxr 9935
Description: Define 'less than' on the set of extended reals. Definition 12-3.1 of [Gleason] p. 173. Note that in our postulates for complex numbers, < is primitive and not necessarily a relation on . (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
df-ltxr < = ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ∪ (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ)))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-ltxr
StepHypRef Expression
1 clt 9930 . 2 class <
2 vx . . . . . . 7 setvar 𝑥
32cv 1473 . . . . . 6 class 𝑥
4 cr 9791 . . . . . 6 class
53, 4wcel 1976 . . . . 5 wff 𝑥 ∈ ℝ
6 vy . . . . . . 7 setvar 𝑦
76cv 1473 . . . . . 6 class 𝑦
87, 4wcel 1976 . . . . 5 wff 𝑦 ∈ ℝ
9 cltrr 9796 . . . . . 6 class <
103, 7, 9wbr 4577 . . . . 5 wff 𝑥 < 𝑦
115, 8, 10w3a 1030 . . . 4 wff (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)
1211, 2, 6copab 4636 . . 3 class {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}
13 cmnf 9928 . . . . . . 7 class -∞
1413csn 4124 . . . . . 6 class {-∞}
154, 14cun 3537 . . . . 5 class (ℝ ∪ {-∞})
16 cpnf 9927 . . . . . 6 class +∞
1716csn 4124 . . . . 5 class {+∞}
1815, 17cxp 5025 . . . 4 class ((ℝ ∪ {-∞}) × {+∞})
1914, 4cxp 5025 . . . 4 class ({-∞} × ℝ)
2018, 19cun 3537 . . 3 class (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))
2112, 20cun 3537 . 2 class ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ∪ (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ)))
221, 21wceq 1474 1 wff < = ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ∪ (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ)))
Colors of variables: wff setvar class
This definition is referenced by:  ltrelxr  9950  ltxrlt  9959  ltxr  11786
  Copyright terms: Public domain W3C validator