MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-le Structured version   Visualization version   GIF version

Definition df-le 9936
Description: Define 'less than or equal to' on the extended real subset of complex numbers. Theorem leloe 9975 relates it to 'less than' for reals. (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
df-le ≤ = ((ℝ* × ℝ*) ∖ < )

Detailed syntax breakdown of Definition df-le
StepHypRef Expression
1 cle 9931 . 2 class
2 cxr 9929 . . . 4 class *
32, 2cxp 5025 . . 3 class (ℝ* × ℝ*)
4 clt 9930 . . . 4 class <
54ccnv 5026 . . 3 class <
63, 5cdif 3536 . 2 class ((ℝ* × ℝ*) ∖ < )
71, 6wceq 1474 1 wff ≤ = ((ℝ* × ℝ*) ∖ < )
Colors of variables: wff setvar class
This definition is referenced by:  lerelxr  9952  xrlenlt  9954  leiso  13054  gtiso  28654
  Copyright terms: Public domain W3C validator