![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-pred | Structured version Visualization version GIF version |
Description: Define the predecessor class of a relationship. This is the class of all elements 𝑦 of 𝐴 such that 𝑦𝑅𝑋 (see elpred 5731) . (Contributed by Scott Fenton, 29-Jan-2011.) |
Ref | Expression |
---|---|
df-pred | ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cR | . . 3 class 𝑅 | |
3 | cX | . . 3 class 𝑋 | |
4 | 1, 2, 3 | cpred 5717 | . 2 class Pred(𝑅, 𝐴, 𝑋) |
5 | 2 | ccnv 5142 | . . . 4 class ◡𝑅 |
6 | 3 | csn 4210 | . . . 4 class {𝑋} |
7 | 5, 6 | cima 5146 | . . 3 class (◡𝑅 “ {𝑋}) |
8 | 1, 7 | cin 3606 | . 2 class (𝐴 ∩ (◡𝑅 “ {𝑋})) |
9 | 4, 8 | wceq 1523 | 1 wff Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) |
Colors of variables: wff setvar class |
This definition is referenced by: predeq123 5719 nfpred 5723 predpredss 5724 predss 5725 sspred 5726 dfpred2 5727 elpredim 5730 elpred 5731 elpredg 5732 predasetex 5733 dffr4 5734 predel 5735 predidm 5740 predin 5741 predun 5742 preddif 5743 predep 5744 pred0 5748 wfi 5751 frpoind 31865 frind 31868 csbpredg 33302 |
Copyright terms: Public domain | W3C validator |