![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-riota | Structured version Visualization version GIF version |
Description: Define restricted description binder. In case there is no unique 𝑥 such that (𝑥 ∈ 𝐴 ∧ 𝜑) holds, it evaluates to the empty set. See also comments for df-iota 5889. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 2-Sep-2018.) |
Ref | Expression |
---|---|
df-riota | ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cA | . . 3 class 𝐴 | |
4 | 1, 2, 3 | crio 6650 | . 2 class (℩𝑥 ∈ 𝐴 𝜑) |
5 | 2 | cv 1522 | . . . . 5 class 𝑥 |
6 | 5, 3 | wcel 2030 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | 6, 1 | wa 383 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
8 | 7, 2 | cio 5887 | . 2 class (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
9 | 4, 8 | wceq 1523 | 1 wff (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Colors of variables: wff setvar class |
This definition is referenced by: riotaeqdv 6652 riotabidv 6653 riotaex 6655 riotav 6656 riotauni 6657 nfriota1 6658 nfriotad 6659 cbvriota 6661 csbriota 6663 riotacl2 6664 riotabidva 6667 riota1 6669 riota2df 6671 snriota 6681 riotaund 6687 ismgmid 17311 q1peqb 23959 adjval 28877 |
Copyright terms: Public domain | W3C validator |