Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-riota Structured version   Visualization version   GIF version

Definition df-riota 6651
 Description: Define restricted description binder. In case there is no unique 𝑥 such that (𝑥 ∈ 𝐴 ∧ 𝜑) holds, it evaluates to the empty set. See also comments for df-iota 5889. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 2-Sep-2018.)
Assertion
Ref Expression
df-riota (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))

Detailed syntax breakdown of Definition df-riota
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 vx . . 3 setvar 𝑥
3 cA . . 3 class 𝐴
41, 2, 3crio 6650 . 2 class (𝑥𝐴 𝜑)
52cv 1522 . . . . 5 class 𝑥
65, 3wcel 2030 . . . 4 wff 𝑥𝐴
76, 1wa 383 . . 3 wff (𝑥𝐴𝜑)
87, 2cio 5887 . 2 class (℩𝑥(𝑥𝐴𝜑))
94, 8wceq 1523 1 wff (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
 Colors of variables: wff setvar class This definition is referenced by:  riotaeqdv  6652  riotabidv  6653  riotaex  6655  riotav  6656  riotauni  6657  nfriota1  6658  nfriotad  6659  cbvriota  6661  csbriota  6663  riotacl2  6664  riotabidva  6667  riota1  6669  riota2df  6671  snriota  6681  riotaund  6687  ismgmid  17311  q1peqb  23959  adjval  28877
 Copyright terms: Public domain W3C validator