MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-sdom Structured version   Visualization version   GIF version

Definition df-sdom 8000
Description: Define the strict dominance relation. Alternate possible definitions are derived as brsdom 8020 and brsdom2 8125. Definition 3 of [Suppes] p. 97. (Contributed by NM, 31-Mar-1998.)
Assertion
Ref Expression
df-sdom ≺ = ( ≼ ∖ ≈ )

Detailed syntax breakdown of Definition df-sdom
StepHypRef Expression
1 csdm 7996 . 2 class
2 cdom 7995 . . 3 class
3 cen 7994 . . 3 class
42, 3cdif 3604 . 2 class ( ≼ ∖ ≈ )
51, 4wceq 1523 1 wff ≺ = ( ≼ ∖ ≈ )
Colors of variables: wff setvar class
This definition is referenced by:  relsdom  8004  brsdom  8020  dfdom2  8023  dfsdom2  8124
  Copyright terms: Public domain W3C validator