MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-trkg Structured version   Visualization version   GIF version

Definition df-trkg 25333
Description: Define the class of Tarski geometries. A Tarski geometry is a set of points, equipped with a betweenness relation (denoting that a point lies on a line segment between two other points) and a congruence relation (denoting equality of line segment lengths). Here, we are using the following:
  • for congruence, (𝑥 𝑦) = (𝑧 𝑤) where = (dist‘𝑊)
  • for betweenness, 𝑦 ∈ (𝑥𝐼𝑧), where 𝐼 = (Itv‘𝑊)
With this definition, the axiom A2 is actually equivalent to the transitivity of addition, eqtrd 2654.

Tarski originally had more axioms, but later reduced his list to 11:

  • A1 A kind of reflexivity for the congruence relation (TarskiGC)
  • A2 Transitivity for the congruence relation (TarskiGC)
  • A3 Identity for the congruence relation (TarskiGC)
  • A4 Axiom of segment construction (TarskiGCB)
  • A5 5-segment axiom (TarskiGCB)
  • A6 Identity for the betweenness relation (TarskiGB)
  • A7 Axiom of Pasch (TarskiGB)
  • A8 Lower dimension axiom (DimTarskiG≥‘2)
  • A9 Upper dimension axiom (V ∖ (DimTarskiG≥‘3))
  • A10 Euclid's axiom (TarskiGE)
  • A11 Axiom of continuity (TarskiGB)
Our definition is split into 5 parts:
  • congruence axioms TarskiGC (which metric spaces fulfill)
  • betweenness axioms TarskiGB
  • congruence and betweenness axioms TarskiGCB
  • upper and lower dimension axioms DimTarskiG
  • axiom of Euclid / parallel postulate TarskiGE

So our definition of a Tarskian Geometry includes the 3 axioms for the quaternary congruence relation (A1, A2, A3), the 3 axioms for the ternary betweenness relation (A6, A7, A11), and the 2 axioms of compatibility of the congruence and the betweenness relations (A4,A5).

It does not include Euclid's axiom A10, nor the 2-dimensional axioms A8 (Lower dimension axiom) and A9 (Upper dimension axiom) so the number of dimensions of the geometry it formalizes is not constrained.

Considering A2 as one of the 3 axioms for the quaternary congruence relation is somewhat conventional, because the transitivity of the congruence relation is automatically given by our choice to take the distance as this congruence relation in our definition of Tarski geometries. (Contributed by Thierry Arnoux, 24-Aug-2017.) (Revised by Thierry Arnoux, 27-Apr-2019.)

Assertion
Ref Expression
df-trkg TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
Distinct variable group:   𝑓,𝑝,𝑖,𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-trkg
StepHypRef Expression
1 cstrkg 25310 . 2 class TarskiG
2 cstrkgc 25311 . . . 4 class TarskiGC
3 cstrkgb 25312 . . . 4 class TarskiGB
42, 3cin 3566 . . 3 class (TarskiGC ∩ TarskiGB)
5 cstrkgcb 25313 . . . 4 class TarskiGCB
6 vf . . . . . . . . . 10 setvar 𝑓
76cv 1480 . . . . . . . . 9 class 𝑓
8 clng 25317 . . . . . . . . 9 class LineG
97, 8cfv 5876 . . . . . . . 8 class (LineG‘𝑓)
10 vx . . . . . . . . 9 setvar 𝑥
11 vy . . . . . . . . 9 setvar 𝑦
12 vp . . . . . . . . . 10 setvar 𝑝
1312cv 1480 . . . . . . . . 9 class 𝑝
1410cv 1480 . . . . . . . . . . 11 class 𝑥
1514csn 4168 . . . . . . . . . 10 class {𝑥}
1613, 15cdif 3564 . . . . . . . . 9 class (𝑝 ∖ {𝑥})
17 vz . . . . . . . . . . . . 13 setvar 𝑧
1817cv 1480 . . . . . . . . . . . 12 class 𝑧
1911cv 1480 . . . . . . . . . . . . 13 class 𝑦
20 vi . . . . . . . . . . . . . 14 setvar 𝑖
2120cv 1480 . . . . . . . . . . . . 13 class 𝑖
2214, 19, 21co 6635 . . . . . . . . . . . 12 class (𝑥𝑖𝑦)
2318, 22wcel 1988 . . . . . . . . . . 11 wff 𝑧 ∈ (𝑥𝑖𝑦)
2418, 19, 21co 6635 . . . . . . . . . . . 12 class (𝑧𝑖𝑦)
2514, 24wcel 1988 . . . . . . . . . . 11 wff 𝑥 ∈ (𝑧𝑖𝑦)
2614, 18, 21co 6635 . . . . . . . . . . . 12 class (𝑥𝑖𝑧)
2719, 26wcel 1988 . . . . . . . . . . 11 wff 𝑦 ∈ (𝑥𝑖𝑧)
2823, 25, 27w3o 1035 . . . . . . . . . 10 wff (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))
2928, 17, 13crab 2913 . . . . . . . . 9 class {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))}
3010, 11, 13, 16, 29cmpt2 6637 . . . . . . . 8 class (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})
319, 30wceq 1481 . . . . . . 7 wff (LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})
32 citv 25316 . . . . . . . 8 class Itv
337, 32cfv 5876 . . . . . . 7 class (Itv‘𝑓)
3431, 20, 33wsbc 3429 . . . . . 6 wff [(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})
35 cbs 15838 . . . . . . 7 class Base
367, 35cfv 5876 . . . . . 6 class (Base‘𝑓)
3734, 12, 36wsbc 3429 . . . . 5 wff [(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})
3837, 6cab 2606 . . . 4 class {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}
395, 38cin 3566 . . 3 class (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})
404, 39cin 3566 . 2 class ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
411, 40wceq 1481 1 wff TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
Colors of variables: wff setvar class
This definition is referenced by:  axtgcgrrflx  25342  axtgcgrid  25343  axtgsegcon  25344  axtg5seg  25345  axtgbtwnid  25346  axtgpasch  25347  axtgcont1  25348  tglng  25422  f1otrg  25732  eengtrkg  25846
  Copyright terms: Public domain W3C validator